491 lines
14 KiB
C
491 lines
14 KiB
C
#include "io_internal.h"
|
|
#ifdef HAVE_EPOLL
|
|
#define _XOPEN_SOURCE
|
|
#endif
|
|
#ifdef HAVE_SIGIO
|
|
#define _GNU_SOURCE
|
|
#include <signal.h>
|
|
#endif
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#ifdef __MINGW32__
|
|
#include <windows.h>
|
|
#include <stdio.h>
|
|
#else
|
|
#include <poll.h>
|
|
#endif
|
|
#include <errno.h>
|
|
#ifdef HAVE_KQUEUE
|
|
#include <sys/event.h>
|
|
#endif
|
|
#ifdef HAVE_EPOLL
|
|
#include <inttypes.h>
|
|
#include <sys/epoll.h>
|
|
#endif
|
|
#ifdef HAVE_DEVPOLL
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/devpoll.h>
|
|
#endif
|
|
|
|
#ifdef __dietlibc__
|
|
#include "fmt.h"
|
|
#include <write12.h>
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#ifndef EPOLLRDNORM
|
|
#define EPOLLRDNORM 0
|
|
#endif
|
|
#ifndef EPOLLRDBAND
|
|
#define EPOLLRDNORM 0
|
|
#endif
|
|
|
|
#if 0
|
|
static void handleevent(int fd,int readable,int writable,int error) {
|
|
io_entry* e=array_get(&io_fds,sizeof(io_entry),fd);
|
|
if (e) {
|
|
int curevents=0,newevents;
|
|
if (e->kernelwantread) curevents |= POLLIN;
|
|
if (e->kernelwantwrite) curevents |= POLLOUT;
|
|
|
|
#ifdef DEBUG
|
|
if (readable && !e->kernelwantread)
|
|
printf("got unexpected read event on fd #%d\n",fd);
|
|
if (writable && !e->kernelwantwrite)
|
|
printf("got unexpected write event on fd #%d\n",fd);
|
|
#endif
|
|
|
|
if (error) {
|
|
/* signal whatever app is looking for */
|
|
if (e->wantread) readable=1;
|
|
if (e->wantwrite) writable=1;
|
|
}
|
|
|
|
if (readable && !e->canread) {
|
|
e->canread=1;
|
|
if (e->wantread) {
|
|
e->next_read=first_readable;
|
|
first_readable=y[i].data.fd;
|
|
}
|
|
}
|
|
if (writable && !e->canwrite) {
|
|
e->canwrite=1;
|
|
if (e->wantwrite) {
|
|
e->next_write=first_writeable;
|
|
first_writeable=y[i].data.fd;
|
|
}
|
|
}
|
|
|
|
/* TODO: wie kommuniziere ich nach außen, was der Caller tun soll?
|
|
* Bitfeld-Integer? */
|
|
|
|
newevents=0;
|
|
if (!e->canread || e->wantread) {
|
|
newevents|=EPOLLIN;
|
|
e->kernelwantread=1;
|
|
} else
|
|
e->kernelwantread=0;
|
|
if (!e->canwrite || e->wantwrite) {
|
|
newevents|=EPOLLOUT;
|
|
e->kernelwantwrite=1;
|
|
} else
|
|
e->kernelwantwrite=0;
|
|
if (newevents != curevents) {
|
|
#if 0
|
|
printf("canread %d, wantread %d, kernelwantread %d, canwrite %d, wantwrite %d, kernelwantwrite %d\n",
|
|
e->canread,e->wantread,e->kernelwantread,e->canwrite,e->wantwrite,e->kernelwantwrite);
|
|
printf("newevents: read %d write %d\n",!!(newevents&EPOLLIN),!!(newevents&EPOLLOUT));
|
|
#endif
|
|
y[i].events=newevents;
|
|
if (newevents) {
|
|
epoll_ctl(io_master,EPOLL_CTL_MOD,y[i].data.fd,y+i);
|
|
} else {
|
|
epoll_ctl(io_master,EPOLL_CTL_DEL,y[i].data.fd,y+i);
|
|
--io_wanted_fds;
|
|
}
|
|
}
|
|
} else {
|
|
epoll_ctl(io_master,EPOLL_CTL_DEL,y[i].data.fd,y+i);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int64 io_waituntil2(int64 milliseconds) {
|
|
#ifndef __MINGW32__
|
|
struct pollfd* p;
|
|
#endif
|
|
long i,j,r;
|
|
if (first_deferred!=-1) {
|
|
while (first_deferred!=-1) {
|
|
io_entry* e=iarray_get(&io_fds,first_deferred);
|
|
if (e) {
|
|
if (e->closed) {
|
|
e->closed=0;
|
|
close(first_deferred);
|
|
}
|
|
first_deferred=e->next_defer;
|
|
} else
|
|
first_deferred=-1; // can't happen
|
|
}
|
|
}
|
|
if (!io_wanted_fds) return 0;
|
|
#ifdef HAVE_EPOLL
|
|
if (io_waitmode==EPOLL) {
|
|
int n;
|
|
struct epoll_event y[100];
|
|
if ((n=epoll_wait(io_master,y,100,milliseconds))==-1) return -1;
|
|
for (i=0; i<n; ++i) {
|
|
io_entry* e=iarray_get(&io_fds,y[i].data.fd);
|
|
if (e) {
|
|
int curevents=0,newevents;
|
|
if (e->kernelwantread) curevents |= EPOLLIN;
|
|
if (e->kernelwantwrite) curevents |= EPOLLOUT;
|
|
|
|
#ifdef DEBUG
|
|
if ((y[i].events&(EPOLLIN|EPOLLPRI|EPOLLRDNORM|EPOLLRDBAND)) && !e->kernelwantread)
|
|
printf("got unexpected read event on fd #%d\n",y[i].data.fd);
|
|
if ((y[i].events&EPOLLOUT) && !e->kernelwantwrite)
|
|
printf("got unexpected write event on fd #%d\n",y[i].data.fd);
|
|
#endif
|
|
|
|
if (y[i].events&(POLLERR|POLLHUP)) {
|
|
/* error; signal whatever app is looking for */
|
|
if (e->wantread) y[i].events|=POLLIN;
|
|
if (e->wantwrite) y[i].events|=POLLOUT;
|
|
}
|
|
|
|
newevents=0;
|
|
if (!e->canread || e->wantread) {
|
|
newevents|=EPOLLIN;
|
|
e->kernelwantread=1;
|
|
} else
|
|
e->kernelwantread=0;
|
|
if (!e->canwrite || e->wantwrite) {
|
|
newevents|=EPOLLOUT;
|
|
e->kernelwantwrite=1;
|
|
} else
|
|
e->kernelwantwrite=0;
|
|
|
|
/* if we think we can not read, but the kernel tells us that we
|
|
* can, put this fd in the relevant data structures */
|
|
if (!e->canread && (y[i].events&(EPOLLIN|EPOLLPRI|EPOLLRDNORM|EPOLLRDBAND))) {
|
|
if (e->canread) {
|
|
newevents &= ~EPOLLIN;
|
|
} else {
|
|
e->canread=1;
|
|
if (e->wantread) {
|
|
e->next_read=first_readable;
|
|
first_readable=y[i].data.fd;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if the kernel says the fd is writable, ... */
|
|
if (y[i].events&EPOLLOUT) {
|
|
/* Usually, if the kernel says a descriptor is writable, we
|
|
* note it and do not tell the kernel not to tell us again.
|
|
* The idea is that once we notify the caller that the fd is
|
|
* writable, and the caller handles the event, the caller will
|
|
* just ask to be notified of future write events again. We
|
|
* are trying to save the superfluous epoll_ctl syscalls.
|
|
* If e->canwrite is set, then this gamble did not work out.
|
|
* We told the caller, yet after the caller is done we still
|
|
* got another write event. Clearly the user is implementing
|
|
* some kind of throttling and we can tell the kernel to leave
|
|
* us alone for now. */
|
|
if (e->canwrite) {
|
|
newevents &= ~EPOLLOUT;
|
|
e->kernelwantwrite=0;
|
|
} else {
|
|
/* If !e->wantwrite: The laziness optimization in
|
|
* io_dontwantwrite hit. We did not tell the kernel that we
|
|
* are no longer interested in writing to save the syscall.
|
|
* Now we know we could write if we wanted; remember that
|
|
* and then go on. */
|
|
e->canwrite=1;
|
|
if (e->wantwrite) {
|
|
e->next_write=first_writeable;
|
|
first_writeable=y[i].data.fd;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (newevents != curevents) {
|
|
#if 0
|
|
printf("canread %d, wantread %d, kernelwantread %d, canwrite %d, wantwrite %d, kernelwantwrite %d\n",
|
|
e->canread,e->wantread,e->kernelwantread,e->canwrite,e->wantwrite,e->kernelwantwrite);
|
|
printf("newevents: read %d write %d\n",!!(newevents&EPOLLIN),!!(newevents&EPOLLOUT));
|
|
#endif
|
|
y[i].events=newevents;
|
|
if (newevents) {
|
|
epoll_ctl(io_master,EPOLL_CTL_MOD,y[i].data.fd,y+i);
|
|
} else {
|
|
epoll_ctl(io_master,EPOLL_CTL_DEL,y[i].data.fd,y+i);
|
|
--io_wanted_fds;
|
|
}
|
|
}
|
|
} else {
|
|
#if 0
|
|
#ifdef __dietlibc__
|
|
char buf[FMT_ULONG];
|
|
buf[fmt_ulong(buf,y[i].data.fd)]=0;
|
|
__write2("got epoll event on invalid fd ");
|
|
__write2(buf);
|
|
__write2("!\n");
|
|
#endif
|
|
#endif
|
|
epoll_ctl(io_master,EPOLL_CTL_DEL,y[i].data.fd,y+i);
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
#endif
|
|
#ifdef HAVE_KQUEUE
|
|
if (io_waitmode==KQUEUE) {
|
|
struct kevent y[100];
|
|
int n;
|
|
struct timespec ts;
|
|
ts.tv_sec=milliseconds/1000; ts.tv_nsec=(milliseconds%1000)*1000000;
|
|
if ((n=kevent(io_master,0,0,y,100,milliseconds!=-1?&ts:0))==-1) return -1;
|
|
for (i=n-1; i>=0; --i) {
|
|
io_entry* e=iarray_get(&io_fds,y[--n].ident);
|
|
if (e) {
|
|
if (y[n].flags&EV_ERROR) {
|
|
/* error; signal whatever app is looking for */
|
|
if (e->wantread) y[n].filter=EVFILT_READ; else
|
|
if (e->wantwrite) y[n].filter=EVFILT_WRITE;
|
|
}
|
|
if (!e->canread && (y[n].filter==EVFILT_READ)) {
|
|
e->canread=1;
|
|
e->next_read=first_readable;
|
|
first_readable=y[n].ident;
|
|
}
|
|
if (!e->canwrite && (y[n].filter==EVFILT_WRITE)) {
|
|
e->canwrite=1;
|
|
e->next_write=first_writeable;
|
|
first_writeable=y[i].ident;
|
|
}
|
|
#ifdef DEBUG
|
|
} else {
|
|
fprintf(stderr,"got kevent on fd#%d, which is not in array!\n",y[n].ident);
|
|
#endif
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
#endif
|
|
#ifdef HAVE_DEVPOLL
|
|
if (io_waitmode==DEVPOLL) {
|
|
dvpoll_t timeout;
|
|
struct pollfd y[100];
|
|
int n;
|
|
timeout.dp_timeout=milliseconds;
|
|
timeout.dp_nfds=100;
|
|
timeout.dp_fds=y;
|
|
if ((n=ioctl(io_master,DP_POLL,&timeout))==-1) return -1;
|
|
for (i=n-1; i>=0; --i) {
|
|
io_entry* e=iarray_get(&io_fds,y[--n].fd);
|
|
if (e) {
|
|
if (y[n].revents&(POLLERR|POLLHUP|POLLNVAL)) {
|
|
/* error; signal whatever app is looking for */
|
|
if (e->wantread) y[n].revents=POLLIN;
|
|
if (e->wantwrite) y[n].revents=POLLOUT;
|
|
}
|
|
if (!e->canread && (y[n].revents&POLLIN)) {
|
|
e->canread=1;
|
|
if (e->next_read==-1) {
|
|
e->next_read=first_readable;
|
|
first_readable=y[n].fd;
|
|
}
|
|
}
|
|
if (!e->canwrite && (y[n].revents&POLLOUT)) {
|
|
e->canwrite=1;
|
|
if (e->next_write==-1) {
|
|
e->next_write=first_writeable;
|
|
first_writeable=y[i].fd;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
} else {
|
|
fprintf(stderr,"got kevent on fd#%d, which is not in array!\n",y[n].fd);
|
|
#endif
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
#endif
|
|
#ifdef HAVE_SIGIO
|
|
if (io_waitmode==_SIGIO) {
|
|
siginfo_t info;
|
|
struct timespec ts;
|
|
int r;
|
|
io_entry* e;
|
|
if (alt_firstread>=0 && (e=iarray_get(&io_fds,alt_firstread)) && e->canread) return 1;
|
|
if (alt_firstwrite>=0 && (e=iarray_get(&io_fds,alt_firstwrite)) && e->canwrite) return 1;
|
|
if (milliseconds==-1)
|
|
r=sigwaitinfo(&io_ss,&info);
|
|
else {
|
|
ts.tv_sec=milliseconds/1000; ts.tv_nsec=(milliseconds%1000)*1000000;
|
|
r=sigtimedwait(&io_ss,&info,&ts);
|
|
}
|
|
switch (r) {
|
|
case SIGIO:
|
|
/* signal queue overflow */
|
|
signal(io_signum,SIG_DFL);
|
|
goto dopoll;
|
|
default:
|
|
if (r==io_signum) {
|
|
io_entry* e=iarray_get(&io_fds,info.si_fd);
|
|
if (e) {
|
|
if (info.si_band&(POLLERR|POLLHUP)) {
|
|
/* error; signal whatever app is looking for */
|
|
if (e->wantread) info.si_band|=POLLIN;
|
|
if (e->wantwrite) info.si_band|=POLLOUT;
|
|
}
|
|
if (info.si_band&POLLIN && !e->canread) {
|
|
debug_printf(("io_waituntil2: enqueueing %ld in normal read queue before %ld\n",info.si_fd,first_readable));
|
|
e->canread=1;
|
|
e->next_read=first_readable;
|
|
first_readable=info.si_fd;
|
|
}
|
|
if (info.si_band&POLLOUT && !e->canwrite) {
|
|
debug_printf(("io_waituntil2: enqueueing %ld in normal write queue before %ld\n",info.si_fd,first_writeable));
|
|
e->canwrite=1;
|
|
e->next_write=first_writeable;
|
|
first_writeable=info.si_fd;
|
|
}
|
|
#ifdef DEBUG
|
|
} else {
|
|
fprintf(stderr,"got kevent on fd#%d, which is not in array!\n",info.si_fd);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
dopoll:
|
|
#endif
|
|
#ifdef __MINGW32__
|
|
DWORD numberofbytes;
|
|
ULONG_PTR x;
|
|
LPOVERLAPPED o;
|
|
if (first_readable!=-1 || first_writeable!=-1) {
|
|
fprintf(stderr,"io_waituntil2() returning immediately because first_readable(%p) or first_writeable(%p) are set\n",first_readable,first_writeable);
|
|
return;
|
|
}
|
|
fprintf(stderr,"Calling GetQueuedCompletionStatus %p...",io_comport);
|
|
if (GetQueuedCompletionStatus(io_comport,&numberofbytes,&x,&o,milliseconds==-1?INFINITE:milliseconds)) {
|
|
io_entry* e=iarray_get(&io_fds,x);
|
|
fprintf(stderr," OK. Got %x, e=%p\n",x,e);
|
|
if (!e) return 0;
|
|
e->errorcode=0;
|
|
fprintf(stderr,"o=%p, e->or=%p, e->ow=%p, e->os=%p\n",o,&e->or,&e->ow,&e->os);
|
|
fprintf(stderr,"e->readqueued=%d, e->writequeued=%d, e->acceptqueued=%d, e->connectqueued=%d, e->sendfilequeued=%d\n",
|
|
e->readqueued,e->writequeued,e->acceptqueued,e->connectqueued,e->sendfilequeued);
|
|
if (o==&e->or && e->readqueued==1) {
|
|
e->readqueued=2;
|
|
e->canread=1;
|
|
e->bytes_read=numberofbytes;
|
|
e->next_read=first_readable;
|
|
first_readable=x;
|
|
// printf("read %lu bytes on fd %lu: %p\n",numberofbytes,x,e);
|
|
} else if (o==&e->ow && e->writequeued==1) {
|
|
e->writequeued=2;
|
|
e->canwrite=1;
|
|
e->bytes_written=numberofbytes;
|
|
e->next_write=first_writeable;
|
|
first_writeable=x;
|
|
} else if (o==&e->or && e->acceptqueued==1) {
|
|
e->acceptqueued=2;
|
|
e->canread=1;
|
|
e->next_read=first_readable;
|
|
first_readable=x;
|
|
} else if (o==&e->ow && e->connectqueued==1) {
|
|
e->connectqueued=2;
|
|
e->canwrite=1;
|
|
e->next_write=first_writeable;
|
|
first_writeable=x;
|
|
} else if (o==&e->os && e->sendfilequeued==1) {
|
|
e->sendfilequeued=2;
|
|
e->canwrite=1;
|
|
e->bytes_written=numberofbytes;
|
|
e->next_write=first_writeable;
|
|
first_writeable=x;
|
|
}
|
|
return 1;
|
|
} else {
|
|
/* either the overlapped I/O request failed or we timed out */
|
|
DWORD err;
|
|
io_entry* e;
|
|
fprintf(stderr," failure, o=%p.\n",o);
|
|
if (!o) return 0; /* timeout */
|
|
/* we got a completion packet for a failed I/O operation */
|
|
err=GetLastError();
|
|
if (err==WAIT_TIMEOUT) return 0; /* or maybe not */
|
|
e=iarray_get(&io_fds,x);
|
|
if (!e) return 0; /* WTF?! */
|
|
e->errorcode=err;
|
|
if (o==&e->or && (e->readqueued || e->acceptqueued)) {
|
|
if (e->readqueued) e->readqueued=2; else
|
|
if (e->acceptqueued) e->acceptqueued=2;
|
|
e->canread=1;
|
|
e->bytes_read=-1;
|
|
e->next_read=first_readable;
|
|
first_readable=x;
|
|
} else if ((o==&e->ow || o==&e->os) &&
|
|
(e->writequeued || e->connectqueued || e->sendfilequeued)) {
|
|
if (o==&e->ow) {
|
|
if (e->writequeued) e->writequeued=2; else
|
|
if (e->connectqueued) e->connectqueued=2;
|
|
} else if (o==&e->os) e->sendfilequeued=2;
|
|
e->canwrite=1;
|
|
e->bytes_written=-1;
|
|
e->next_write=first_writeable;
|
|
first_writeable=x;
|
|
}
|
|
return 1;
|
|
}
|
|
#else
|
|
for (i=r=0; (size_t)i<iarray_length(&io_fds); ++i) {
|
|
io_entry* e=iarray_get(&io_fds,i);
|
|
if (!e) return -1;
|
|
e->canread=e->canwrite=0;
|
|
if (e->wantread || e->wantwrite) {
|
|
struct pollfd* p;
|
|
if ((p=array_allocate(&io_pollfds,sizeof(struct pollfd),r))) {
|
|
p->fd=i;
|
|
p->events=(e->wantread?POLLIN:0) + (e->wantwrite?POLLOUT:0);
|
|
++r;
|
|
} else
|
|
return -1;
|
|
}
|
|
}
|
|
p=array_start(&io_pollfds);
|
|
if ((i=poll(array_start(&io_pollfds),r,milliseconds))<1) return -1;
|
|
for (j=r-1; j>=0; --j) {
|
|
io_entry* e=iarray_get(&io_fds,p->fd);
|
|
if (p->revents&(POLLERR|POLLHUP|POLLNVAL)) {
|
|
/* error; signal whatever app is looking for */
|
|
if (e->wantread) p->revents|=POLLIN;
|
|
if (e->wantwrite) p->revents|=POLLOUT;
|
|
}
|
|
if (!e->canread && (p->revents&POLLIN)) {
|
|
e->canread=1;
|
|
e->next_read=first_readable;
|
|
first_readable=p->fd;
|
|
}
|
|
if (!e->canwrite && (p->revents&POLLOUT)) {
|
|
e->canwrite=1;
|
|
e->next_write=first_writeable;
|
|
first_writeable=p->fd;
|
|
}
|
|
p++;
|
|
}
|
|
return i;
|
|
#endif
|
|
}
|