mirror of
https://github.com/emmansun/gmsm.git
synced 2025-09-18 21:03:49 +08:00
Updated MFMM (markdown)
parent
1aa9dfcce9
commit
ec94141df0
15
MFMM.md
15
MFMM.md
@ -283,7 +283,7 @@ acc0, acc1, acc2, acc3, acc4, acc5是64位寄存器
|
|||||||
PASS
|
PASS
|
||||||
ok github.com/emmansun/gmsm/sm2 4.753s
|
ok github.com/emmansun/gmsm/sm2 4.753s
|
||||||
|
|
||||||
### 续
|
### 续1:平方的模约减优化
|
||||||
SM2 256 的素数P=0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff,也可以表示为
|
SM2 256 的素数P=0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff,也可以表示为
|
||||||
|
|
||||||
$P = 2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1)$
|
$P = 2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1)$
|
||||||
@ -301,3 +301,16 @@ $T_2=t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \as
|
|||||||
$T_3=T + T_2=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + t_4 \ast 2^{256} + t_3 \ast 2^{192} + t_2 \ast 2^{128} + t_1 \ast 2^{64} + t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} - t_0 $
|
$T_3=T + T_2=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + t_4 \ast 2^{256} + t_3 \ast 2^{192} + t_2 \ast 2^{128} + t_1 \ast 2^{64} + t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} - t_0 $
|
||||||
$T_3=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + (t_4+t_0) \ast 2^{256}+(t_3 - t_0 \ast 2^{32}) \ast 2^{192} + t_2 \ast 2^{128} + (t_1 + t_0 - t_0 \ast 2^{32}) \ast 2^{64} $
|
$T_3=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + (t_4+t_0) \ast 2^{256}+(t_3 - t_0 \ast 2^{32}) \ast 2^{192} + t_2 \ast 2^{128} + (t_1 + t_0 - t_0 \ast 2^{32}) \ast 2^{64} $
|
||||||
|
|
||||||
|
先处理加法,后处理减法,后三个加法是带进位加法
|
||||||
|
$t_1=t_0 + t_1$
|
||||||
|
$t_2=t_2 + 0$
|
||||||
|
$t_3=t_3 + 0$
|
||||||
|
$t_0=t_0 + 0$
|
||||||
|
t<sub>0</sub>会不会是0xffffffffffffffff呢?显然不会,因为T是某个数的平方,而这个数的取值范围是[0, P-1]。
|
||||||
|
接着处理减法,假定a<sub>0</sub>是 $t_0 \ast 2^{32}$ 的低64位,a<sub>1</sub>是 $t_0 \ast 2^{32}$ 的高64位:
|
||||||
|
$t_1=t_1 - a_0$
|
||||||
|
$t_2=t_2 - a_1$
|
||||||
|
$t_3=t_3 - a_0$
|
||||||
|
$t_0=t_0 - a_1$
|
||||||
|
t<sub>0</sub>会不会不够减呢?
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user