From b9cc74650eede4819bfd5f730b6039687ae23d02 Mon Sep 17 00:00:00 2001 From: Sun Yimin Date: Wed, 16 Apr 2025 01:54:43 +0000 Subject: [PATCH] =?UTF-8?q?Updated=20=E5=90=8E=E9=87=8F=E5=AD=90=E5=AF=86?= =?UTF-8?q?=E7=A0=81=E5=AD=A6=EF=BC=88PQC=EF=BC=89=E2=80=90=20=E5=AE=9E?= =?UTF-8?q?=E7=8E=B0Kyber=E6=89=80=E9=9C=80=E7=9A=84=E5=A4=9A=E9=A1=B9?= =?UTF-8?q?=E5=BC=8F=E5=92=8C=E7=BA=BF=E6=80=A7=E4=BB=A3=E6=95=B0=E7=9F=A5?= =?UTF-8?q?=E8=AF=86=20(markdown)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...r所需的多项式和线性代数知识.md | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/后量子密码学(PQC)‐-实现Kyber所需的多项式和线性代数知识.md b/后量子密码学(PQC)‐-实现Kyber所需的多项式和线性代数知识.md index e02b137..e42522f 100644 --- a/后量子密码学(PQC)‐-实现Kyber所需的多项式和线性代数知识.md +++ b/后量子密码学(PQC)‐-实现Kyber所需的多项式和线性代数知识.md @@ -94,22 +94,22 @@ $$A=\begin{bmatrix} ```math \hat{A} \cdot \hat{v} = -\begin{pmatrix} +\begin{bmatrix} \hat{a}_{0,0} & \hat{a}_{0,1} & \hat{a}_{0,2} \\ \hat{a}_{1,0} & \hat{a}_{1,1} & \hat{a}_{1,2} \\ \hat{a}_{2,0} & \hat{a}_{2,1} & \hat{a}_{2,2} \\ -\end{pmatrix} -\begin{pmatrix} +\end{bmatrix} +\begin{bmatrix} \hat{v}_{0} \\ \hat{v}_{1} \\ \hat{v}_{2} \\ -\end{pmatrix} +\end{bmatrix} = -\begin{pmatrix} +\begin{bmatrix} \hat{a}_{0,0}\hat{v}_{0} + \hat{a}_{0,1}\hat{v}_{1} + \hat{a}_{0,2}\hat{v}_{2} \\ \hat{a}_{1,0}\hat{v}_{0} + \hat{a}_{1,1}\hat{v}_{1} + \hat{a}_{1,2}\hat{v}_{2} \\ \hat{a}_{2,0}\hat{v}_{0} + \hat{a}_{2,1}\hat{v}_{1} + \hat{a}_{2,2}\hat{v}_{2} \\ -\end{pmatrix} +\end{bmatrix} ``` 当我们将一个向量(记为 $\hat{v}$ )进行转置后与它自己相乘(即 $\hat{v}^T \circ \hat{v}$ ,这也被称为内积),其结果是一个 $1×k$ 维的矩阵与一个 $k×1$ 维的矩阵相乘,最终得到一个 $1×1$ 的矩阵。实际上,这只不过是说它是一个点积的复杂表达方式,其结果是产生一个“标量”(即一个单独的元素)。你只需要按坐标逐个相乘这些元素,然后将它们全部加在一起。 @@ -118,14 +118,14 @@ $$A=\begin{bmatrix} ```math \hat{u}^T \cdot \hat{v} = -\begin{pmatrix} +\begin{bmatrix} \hat{u}_0 & \hat{u}_1 & \hat{u}_2 \\ -\end{pmatrix} +\end{bmatrix} \begin{pmatrix} \hat{v}_{0} \\ \hat{v}_{1} \\ \hat{v}_{2} \\ -\end{pmatrix} +\end{bmatrix} =\hat{u}_0\hat{v}_{0} + \hat{u}_1\hat{v}_{1} + \hat{u}_2\hat{v}_{2} ```