mirror of
https://github.com/emmansun/gmsm.git
synced 2025-05-14 13:06:18 +08:00
Updated 后量子密码学(PQC)‐ 实现Kyber所需的多项式和线性代数知识 (markdown)
parent
e4261087bf
commit
b9cc74650e
@ -94,22 +94,22 @@ $$A=\begin{bmatrix}
|
||||
|
||||
```math
|
||||
\hat{A} \cdot \hat{v} =
|
||||
\begin{pmatrix}
|
||||
\begin{bmatrix}
|
||||
\hat{a}_{0,0} & \hat{a}_{0,1} & \hat{a}_{0,2} \\
|
||||
\hat{a}_{1,0} & \hat{a}_{1,1} & \hat{a}_{1,2} \\
|
||||
\hat{a}_{2,0} & \hat{a}_{2,1} & \hat{a}_{2,2} \\
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
\hat{v}_{0} \\
|
||||
\hat{v}_{1} \\
|
||||
\hat{v}_{2} \\
|
||||
\end{pmatrix}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\begin{bmatrix}
|
||||
\hat{a}_{0,0}\hat{v}_{0} + \hat{a}_{0,1}\hat{v}_{1} + \hat{a}_{0,2}\hat{v}_{2} \\
|
||||
\hat{a}_{1,0}\hat{v}_{0} + \hat{a}_{1,1}\hat{v}_{1} + \hat{a}_{1,2}\hat{v}_{2} \\
|
||||
\hat{a}_{2,0}\hat{v}_{0} + \hat{a}_{2,1}\hat{v}_{1} + \hat{a}_{2,2}\hat{v}_{2} \\
|
||||
\end{pmatrix}
|
||||
\end{bmatrix}
|
||||
```
|
||||
|
||||
当我们将一个向量(记为 $\hat{v}$ )进行转置后与它自己相乘(即 $\hat{v}^T \circ \hat{v}$ ,这也被称为内积),其结果是一个 $1×k$ 维的矩阵与一个 $k×1$ 维的矩阵相乘,最终得到一个 $1×1$ 的矩阵。实际上,这只不过是说它是一个点积的复杂表达方式,其结果是产生一个“标量”(即一个单独的元素)。你只需要按坐标逐个相乘这些元素,然后将它们全部加在一起。
|
||||
@ -118,14 +118,14 @@ $$A=\begin{bmatrix}
|
||||
|
||||
```math
|
||||
\hat{u}^T \cdot \hat{v} =
|
||||
\begin{pmatrix}
|
||||
\begin{bmatrix}
|
||||
\hat{u}_0 & \hat{u}_1 & \hat{u}_2 \\
|
||||
\end{pmatrix}
|
||||
\end{bmatrix}
|
||||
\begin{pmatrix}
|
||||
\hat{v}_{0} \\
|
||||
\hat{v}_{1} \\
|
||||
\hat{v}_{2} \\
|
||||
\end{pmatrix}
|
||||
\end{bmatrix}
|
||||
=\hat{u}_0\hat{v}_{0} + \hat{u}_1\hat{v}_{1} + \hat{u}_2\hat{v}_{2}
|
||||
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user