mirror of
https://github.com/emmansun/gmsm.git
synced 2025-05-11 03:26:17 +08:00
Updated 无进位乘法和GHASH (markdown)
parent
ba71f11556
commit
858c4fb56f
@ -19,7 +19,7 @@ $A_1 \cdot B_1 = [C_1 : C_0], \ A_0 \cdot B_0 = [D_1 : D_0]$
|
|||||||
$(A_1 \oplus A_0) \cdot (B_1 \oplus B_0) = [E_1 : E_0]$
|
$(A_1 \oplus A_0) \cdot (B_1 \oplus B_0) = [E_1 : E_0]$
|
||||||
$[A_1 : A_0] \cdot [B_1 : B_0] = [C_1:C_0 \oplus C_1 \oplus D_1 \oplus E_1 : D_1 \oplus C_0 \oplus D_0 \oplus E_0 : D_0]$
|
$[A_1 : A_0] \cdot [B_1 : B_0] = [C_1:C_0 \oplus C_1 \oplus D_1 \oplus E_1 : D_1 \oplus C_0 \oplus D_0 \oplus E_0 : D_0]$
|
||||||
* A new interpretation to GHASH operations
|
* A new interpretation to GHASH operations
|
||||||
* GHASH does not use $GF(2^{128})$ COMPUTATIONS "as expected"
|
* GHASH does not use $GF(2^{128})$ computations "as expected"
|
||||||
* Not in the usual polynomial representation convention
|
* Not in the usual polynomial representation convention
|
||||||
* The bits inside the 128-bit operands are reflected
|
* The bits inside the 128-bit operands are reflected
|
||||||
* Actually - it is an operation on a permutation of elements of $GF(2^{128})$
|
* Actually - it is an operation on a permutation of elements of $GF(2^{128})$
|
||||||
|
Loading…
x
Reference in New Issue
Block a user