From 858c4fb56fe5fc27aff9456db443a237a8c8bcfc Mon Sep 17 00:00:00 2001 From: Sun Yimin Date: Mon, 21 Aug 2023 15:15:43 +0800 Subject: [PATCH] =?UTF-8?q?Updated=20=E6=97=A0=E8=BF=9B=E4=BD=8D=E4=B9=98?= =?UTF-8?q?=E6=B3=95=E5=92=8CGHASH=20(markdown)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 无进位乘法和GHASH.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/无进位乘法和GHASH.md b/无进位乘法和GHASH.md index 434c393..23c7e45 100644 --- a/无进位乘法和GHASH.md +++ b/无进位乘法和GHASH.md @@ -19,7 +19,7 @@ $A_1 \cdot B_1 = [C_1 : C_0], \ A_0 \cdot B_0 = [D_1 : D_0]$ $(A_1 \oplus A_0) \cdot (B_1 \oplus B_0) = [E_1 : E_0]$ $[A_1 : A_0] \cdot [B_1 : B_0] = [C_1:C_0 \oplus C_1 \oplus D_1 \oplus E_1 : D_1 \oplus C_0 \oplus D_0 \oplus E_0 : D_0]$ * A new interpretation to GHASH operations - * GHASH does not use $GF(2^{128})$ COMPUTATIONS "as expected" + * GHASH does not use $GF(2^{128})$ computations "as expected" * Not in the usual polynomial representation convention * The bits inside the 128-bit operands are reflected * Actually - it is an operation on a permutation of elements of $GF(2^{128})$