diff --git a/SM3中的FF2和GG2函数.md b/SM3中的FF2和GG2函数.md index d3502e9..541a9b0 100644 --- a/SM3中的FF2和GG2函数.md +++ b/SM3中的FF2和GG2函数.md @@ -39,4 +39,12 @@ GG2等价公式初次见于[Intel® Integrated Performance Primitives Cryptograp |1|1|1|1|1|1|1| # 证明 -Ask help https://math.stackexchange.com/questions/4775054/how-to-prove-below-two-logic-formulas \ No newline at end of file +Ask help https://math.stackexchange.com/questions/4775054/how-to-prove-below-two-logic-formulas +GG2(X,Y,Z) += $(X \land Y) \bigoplus (\lnot X \land Z)$ += $(\lnot (X \land Y) \land (\lnot X \land Z)) \lor ((X \land Y) \land (\lnot (\lnot X \land Z)))$ += $((\lnot X \lor \lnot Y) \land (\lnot X \land Z)) \lor ((X \land Y) \land (X \lor \lnot Z))$ += $(\lnot X \land Z) \lor (\lnot X \land \lnot Y \land Z) \lor (X \land Y) \lor (X \land Y \land \lnot Z) $ += $((\lnot X \land Z) \lor (\lnot X \land Z \land \lnot Y)) \lor ((X \land Y) \lor (X \land Y \land \lnot Z))$ += $((X \land Y) \land (1 \lor \lnot Z)) \lor ((\lnot X \land Z) \land (1 \lor \lnot Y))$ += $(X \land Y) \lor (\lnot X \land Z)$ \ No newline at end of file