mirror of
https://github.com/emmansun/gmsm.git
synced 2025-05-10 19:16:18 +08:00
Updated Efficient Software Implementations of ZUC (markdown)
parent
aa0f8faa89
commit
3b59d8570f
@ -47,10 +47,493 @@ print_table(sbox)
|
||||
参考[aes和sm4s盒复合域实现方法](http://zongyue.top:8090/archives/aes%E5%92%8Csm4s%E7%9B%92%E5%A4%8D%E5%90%88%E5%9F%9F%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95)的做法:
|
||||
$S_{zuc}(x)=L(S_{aes}(Mx)+C$,下面我们尝试进行推导 L, M, C
|
||||
假设复合域求逆运算为 $f$,则:
|
||||
$S_{aes}(x)=A_{aes}X_{aes}f(X^{-1}_{aes}x) + 0x63 \rightarrow $
|
||||
$S_{aes}(x)=A_{aes}X_{aes}f(X^{-1}_{aes}x) + 0x63$
|
||||
|
||||
$f(X^{-1}_{aes}x)=X^{-1}_{aes}A^{-1}_{aes}S_{aes}(x) \rightarrow $
|
||||
$S_{zuc}(x)=A_{zuc}X_{zuc}f(X^{-1}_{zuc}x) + 0x55$
|
||||
|
||||
得到
|
||||
$L=A_{zuc}X_{zuc}X^{-1}_{aes}A^{-1}{aes} \ $
|
||||
|
||||
$M=X_{aes}X^{-1}_{zuc}$
|
||||
|
||||
$C=L\ 0x63+0x55$
|
||||
|
||||
```python
|
||||
from pyfinite import ffield
|
||||
from pyfinite import genericmatrix
|
||||
|
||||
XOR = lambda x,y:x^y
|
||||
AND = lambda x,y:x&y
|
||||
DIV = lambda x,y:x
|
||||
|
||||
def aes_f():
|
||||
gen = 0b100011011
|
||||
return ffield.FField(8, gen, useLUT=0)
|
||||
|
||||
def zuc_f():
|
||||
gen = 0b110001011
|
||||
return ffield.FField(8, gen, useLUT=0)
|
||||
|
||||
aesf = aes_f()
|
||||
zucf = zuc_f()
|
||||
|
||||
def field_pow2(x, F):
|
||||
return F.Multiply(x, x)
|
||||
|
||||
def field_pow3(x, F):
|
||||
return F.Multiply(x, field_pow2(x, F))
|
||||
|
||||
def field_pow4(x, F):
|
||||
return field_pow2(field_pow2(x, F), F)
|
||||
|
||||
def field_pow16(x, F):
|
||||
return field_pow4(field_pow4(x, F), F)
|
||||
|
||||
def get_all_WZY(F):
|
||||
result_list = []
|
||||
for i in range(256):
|
||||
if field_pow2(i, F)^i^1 == 0:
|
||||
W=i
|
||||
W_2 = field_pow2(W, F)
|
||||
N = W_2
|
||||
for j in range(256):
|
||||
if field_pow2(j, F)^j^W_2 == 0:
|
||||
Z = j
|
||||
Z_4 = field_pow4(Z, F)
|
||||
u = F.Multiply(field_pow2(N, F), Z)
|
||||
for k in range(256):
|
||||
if field_pow2(k, F)^k^u == 0:
|
||||
Y = k
|
||||
Y_16 = field_pow16(k, F)
|
||||
result_list.append([W, W_2, Z, Z_4, Y, Y_16])
|
||||
return result_list
|
||||
|
||||
def gen_X(F, W, W_2, Z, Z_4, Y, Y_16):
|
||||
W_2_Z_4_Y_16 = F.Multiply(F.Multiply(W_2, Z_4), Y_16)
|
||||
W_Z_4_Y_16 = F.Multiply(F.Multiply(W, Z_4), Y_16)
|
||||
W_2_Z_Y_16 = F.Multiply(F.Multiply(W_2, Z), Y_16)
|
||||
W_Z_Y_16 = F.Multiply(F.Multiply(W, Z), Y_16)
|
||||
W_2_Z_4_Y = F.Multiply(F.Multiply(W_2, Z_4), Y)
|
||||
W_Z_4_Y = F.Multiply(F.Multiply(W, Z_4), Y)
|
||||
W_2_Z_Y = F.Multiply(F.Multiply(W_2, Z), Y)
|
||||
W_Z_Y = F.Multiply(F.Multiply(W, Z), Y)
|
||||
return [W_2_Z_4_Y_16, W_Z_4_Y_16, W_2_Z_Y_16, W_Z_Y_16, W_2_Z_4_Y, W_Z_4_Y, W_2_Z_Y, W_Z_Y]
|
||||
|
||||
def to_matrix(x):
|
||||
m = genericmatrix.GenericMatrix(size=(8,8), zeroElement=0, identityElement=1, add=XOR, mul=AND, sub=XOR, div=DIV)
|
||||
m.SetRow(0, [(x[0] & 0x80) >> 7, (x[1] & 0x80) >> 7, (x[2] & 0x80) >> 7, (x[3] & 0x80) >> 7, (x[4] & 0x80) >> 7, (x[5] & 0x80) >> 7, (x[6] & 0x80) >> 7, (x[7] & 0x80) >> 7])
|
||||
m.SetRow(1, [(x[0] & 0x40) >> 6, (x[1] & 0x40) >> 6, (x[2] & 0x40) >> 6, (x[3] & 0x40) >> 6, (x[4] & 0x40) >> 6, (x[5] & 0x40) >> 6, (x[6] & 0x40) >> 6, (x[7] & 0x40) >> 6])
|
||||
m.SetRow(2, [(x[0] & 0x20) >> 5, (x[1] & 0x20) >> 5, (x[2] & 0x20) >> 5, (x[3] & 0x20) >> 5, (x[4] & 0x20) >> 5, (x[5] & 0x20) >> 5, (x[6] & 0x20) >> 5, (x[7] & 0x20) >> 5])
|
||||
m.SetRow(3, [(x[0] & 0x10) >> 4, (x[1] & 0x10) >> 4, (x[2] & 0x10) >> 4, (x[3] & 0x10) >> 4, (x[4] & 0x10) >> 4, (x[5] & 0x10) >> 4, (x[6] & 0x10) >> 4, (x[7] & 0x10) >> 4])
|
||||
m.SetRow(4, [(x[0] & 0x08) >> 3, (x[1] & 0x08) >> 3, (x[2] & 0x08) >> 3, (x[3] & 0x08) >> 3, (x[4] & 0x08) >> 3, (x[5] & 0x08) >> 3, (x[6] & 0x08) >> 3, (x[7] & 0x08) >> 3])
|
||||
m.SetRow(5, [(x[0] & 0x04) >> 2, (x[1] & 0x04) >> 2, (x[2] & 0x04) >> 2, (x[3] & 0x04) >> 2, (x[4] & 0x04) >> 2, (x[5] & 0x04) >> 2, (x[6] & 0x04) >> 2, (x[7] & 0x04) >> 2])
|
||||
m.SetRow(6, [(x[0] & 0x02) >> 1, (x[1] & 0x02) >> 1, (x[2] & 0x02) >> 1, (x[3] & 0x02) >> 1, (x[4] & 0x02) >> 1, (x[5] & 0x02) >> 1, (x[6] & 0x02) >> 1, (x[7] & 0x02) >> 1])
|
||||
m.SetRow(7, [(x[0] & 0x01) >> 0, (x[1] & 0x01) >> 0, (x[2] & 0x01) >> 0, (x[3] & 0x01) >> 0, (x[4] & 0x01) >> 0, (x[5] & 0x01) >> 0, (x[6] & 0x01) >> 0, (x[7] & 0x01) >> 0])
|
||||
return m
|
||||
|
||||
def matrix_col_byte(c):
|
||||
return (c[0] << 7) ^ (c[1] << 6) ^ (c[2] << 5) ^ (c[3] << 4) ^ (c[4] << 3) ^ (c[5] << 2) ^ (c[6] << 1) ^ (c[7] << 0)
|
||||
|
||||
def matrix_row_byte(c):
|
||||
return (c[0] << 7) ^ (c[1] << 6) ^ (c[2] << 5) ^ (c[3] << 4) ^ (c[4] << 3) ^ (c[5] << 2) ^ (c[6] << 1) ^ (c[7] << 0)
|
||||
|
||||
def matrix_cols(m):
|
||||
x = []
|
||||
for i in range(8):
|
||||
c = m.GetColumn(i)
|
||||
x.append(matrix_col_byte(c))
|
||||
return x
|
||||
|
||||
def matrix_rows(m):
|
||||
x = []
|
||||
for i in range(8):
|
||||
r = m.GetRow(i)
|
||||
x.append(matrix_row_byte(r))
|
||||
return x
|
||||
|
||||
def gen_X_inv(x):
|
||||
m = to_matrix(x)
|
||||
m_inv = m.Inverse()
|
||||
return matrix_cols(m_inv)
|
||||
|
||||
def G4_mul(x, y):
|
||||
'''
|
||||
GF(2^2) multiply operator, normal basis is {W^2, W}
|
||||
'''
|
||||
a = (x & 0x02) >> 1
|
||||
b = x & 0x01
|
||||
c = (y & 0x02) >> 1
|
||||
d = y & 0x01
|
||||
e = (a ^ b) & (c ^ d)
|
||||
return (((a & c) ^ e) << 1) | ((b & d) ^ e)
|
||||
|
||||
def G4_mul_N(x):
|
||||
'''
|
||||
GF(2^2) multiply N, normal basis is {W^2, W}, N = W^2
|
||||
'''
|
||||
a = (x & 0x02) >> 1
|
||||
b = x & 0x01
|
||||
p = b
|
||||
q = a ^ b
|
||||
return (p << 1) | q
|
||||
|
||||
def G4_mul_N2(x):
|
||||
'''
|
||||
GF(2^2) multiply N^2, normal basis is {W^2, W}, N = W^2
|
||||
'''
|
||||
a = (x & 0x02) >> 1
|
||||
b = x & 0x01
|
||||
return ((a ^ b) << 1) | a
|
||||
|
||||
def G4_inv(x):
|
||||
'''
|
||||
GF(2^2) inverse opertor
|
||||
'''
|
||||
a = (x & 0x02) >> 1
|
||||
b = x & 0x01
|
||||
return (b << 1) | a
|
||||
|
||||
def G16_mul(x, y):
|
||||
'''
|
||||
GF(2^4) multiply operator, normal basis is {Z^4, Z}
|
||||
'''
|
||||
a = (x & 0xc) >> 2
|
||||
b = x & 0x03
|
||||
c = (y & 0xc) >> 2
|
||||
d = y & 0x03
|
||||
e = G4_mul(a ^ b, c ^ d)
|
||||
e = G4_mul_N(e)
|
||||
p = G4_mul(a, c) ^ e
|
||||
q = G4_mul(b, d) ^ e
|
||||
return (p << 2) | q
|
||||
|
||||
def G16_sq_mul_u(x):
|
||||
'''
|
||||
GF(2^4) x^2 * u operator, u = N^2 Z, N = W^2
|
||||
'''
|
||||
a = (x & 0xc) >> 2
|
||||
b = x & 0x03
|
||||
p = G4_inv(a ^ b)
|
||||
q = G4_mul_N2(G4_inv(b))
|
||||
return (p << 2) | q
|
||||
|
||||
def G16_inv(x):
|
||||
'''
|
||||
GF(2^4) inverse opertor
|
||||
'''
|
||||
a = (x & 0xc) >> 2
|
||||
b = x & 0x03
|
||||
c = G4_mul_N(G4_inv(a ^ b))
|
||||
d = G4_mul(a, b)
|
||||
e = G4_inv(c ^ d)
|
||||
p = G4_mul(e, b)
|
||||
q = G4_mul(e, a)
|
||||
return (p << 2) | q
|
||||
|
||||
def G256_inv(x):
|
||||
'''
|
||||
GF(2^8) inverse opertor
|
||||
'''
|
||||
a = (x & 0xf0) >> 4
|
||||
b = x & 0x0f
|
||||
c = G16_sq_mul_u(a ^ b)
|
||||
d = G16_mul(a, b)
|
||||
e = G16_inv(c ^ d)
|
||||
p = G16_mul(e, b)
|
||||
q = G16_mul(e, a)
|
||||
return (p << 4) | q
|
||||
|
||||
def G256_new_basis(x, b):
|
||||
'''
|
||||
x presentation under new basis b
|
||||
'''
|
||||
y = 0
|
||||
for i in range(8):
|
||||
if x & (1<<((7-i))):
|
||||
y ^= b[i]
|
||||
return y
|
||||
|
||||
AES_A = [0b10001111, 0b11000111, 0b11100011, 0b11110001, 0b11111000, 0b01111100, 0b00111110, 0b00011111]
|
||||
AES_C = [0, 1, 1, 0, 0, 0, 1, 1]
|
||||
|
||||
def AES_SBOX(X, X_inv):
|
||||
sbox = []
|
||||
for i in range(256):
|
||||
t = G256_new_basis(i, X_inv)
|
||||
t = G256_inv(t)
|
||||
t = G256_new_basis(t, X)
|
||||
t = G256_new_basis(t, AES_A)
|
||||
sbox.append(t ^ 0x63)
|
||||
return sbox
|
||||
|
||||
def print_sbox(sbox):
|
||||
for i, s in enumerate(sbox):
|
||||
print(f'%02x'%s,',', end='')
|
||||
if (i+1) % 16 == 0:
|
||||
print()
|
||||
|
||||
def print_all_aes_sbox():
|
||||
result_list = get_all_WZY(aesf)
|
||||
for i, v in enumerate(result_list):
|
||||
X = gen_X(aesf, v[0], v[1], v[2], v[3], v[4], v[5])
|
||||
X_inv = gen_X_inv(X)
|
||||
print_sbox(AES_SBOX(X, X_inv))
|
||||
print()
|
||||
|
||||
ZUC_A = [0b01110111, 0b10111011, 0b11011101, 0b11101110, 0b11001011, 0b01101101, 0b00111110, 0b10010111]
|
||||
ZUC_C = [0, 1, 0, 1, 0, 1, 0, 1]
|
||||
|
||||
def ZUC_SBOX(X, X_inv):
|
||||
sbox = []
|
||||
for i in range(256):
|
||||
t = G256_new_basis(i, X_inv)
|
||||
t = G256_inv(t)
|
||||
t = G256_new_basis(t, X)
|
||||
t = G256_new_basis(t, ZUC_A)
|
||||
sbox.append(t ^ 0x55)
|
||||
return sbox
|
||||
|
||||
def print_all_zuc_sbox():
|
||||
result_list = get_all_WZY(zucf)
|
||||
for i, v in enumerate(result_list):
|
||||
X = gen_X(zucf, v[0], v[1], v[2], v[3], v[4], v[5])
|
||||
X_inv = gen_X_inv(X)
|
||||
print_sbox(ZUC_SBOX(X, X_inv))
|
||||
print()
|
||||
|
||||
def print_m(m):
|
||||
for i, s in enumerate(m):
|
||||
print(f'0x%02x'%s,',', end='')
|
||||
|
||||
def gen_all_m1_c1_m2_c2():
|
||||
aes_result_list = get_all_WZY(aesf)
|
||||
zuc_result_list = get_all_WZY(zucf)
|
||||
Aaes = to_matrix(AES_A)
|
||||
Aaes_inv = Aaes.Inverse()
|
||||
Azuc = to_matrix(ZUC_A)
|
||||
Caes = genericmatrix.GenericMatrix(size=(8, 1), zeroElement=0, identityElement=1, add=XOR, mul=AND, sub=XOR, div=DIV)
|
||||
for i in range(8):
|
||||
Caes.SetRow(i, [AES_C[i]])
|
||||
Czuc = genericmatrix.GenericMatrix(size=(8, 1), zeroElement=0, identityElement=1, add=XOR, mul=AND, sub=XOR, div=DIV)
|
||||
for i in range(8):
|
||||
Czuc.SetRow(i, [ZUC_C[i]])
|
||||
for i, v1 in enumerate(aes_result_list):
|
||||
Xaes = to_matrix(gen_X(aesf, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]))
|
||||
Xaes_inv = Xaes.Inverse()
|
||||
for j, v2 in enumerate(zuc_result_list):
|
||||
Xzuc = to_matrix(gen_X(zucf, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5]))
|
||||
Xzuc_inv = Xzuc.Inverse()
|
||||
M1 = Xaes * Xzuc_inv
|
||||
M2 = Azuc * Xzuc * Xaes_inv * Aaes_inv
|
||||
C2 = M2 * Caes
|
||||
print(f'M1=','', end='')
|
||||
print_m(matrix_rows(M1))
|
||||
print(f' C1=','', end='')
|
||||
print(hex(0x0))
|
||||
print(f'M2=','', end='')
|
||||
print_m(matrix_rows(M2))
|
||||
print(f' C2=','', end='')
|
||||
print(hex(0x55 ^ matrix_col_byte(C2.GetColumn(0))))
|
||||
print()
|
||||
|
||||
gen_all_m1_c1_m2_c2()
|
||||
```
|
||||
|
||||
结果:
|
||||
```
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x70 ,0x7c ,0xae ,0x1e ,0xf0 ,0xc8 ,0x06 ,0xdd , C1= 0x0
|
||||
M2= 0x02 ,0xa5 ,0xd8 ,0x5a ,0x05 ,0xd9 ,0xed ,0x0d , C2= 0xfe
|
||||
|
||||
M1= 0x96 ,0x50 ,0x48 ,0xd4 ,0xe4 ,0xdc ,0x06 ,0x11 , C1= 0x0
|
||||
M2= 0x3a ,0xd4 ,0x1e ,0xad ,0xb2 ,0x99 ,0x1a ,0x3c , C2= 0x32
|
||||
|
||||
M1= 0x6a ,0x42 ,0xb4 ,0x16 ,0xec ,0x0a ,0xf4 ,0xa7 , C1= 0x0
|
||||
M2= 0x62 ,0xf2 ,0xa0 ,0xcd ,0xec ,0xae ,0xbc ,0xeb , C2= 0xb7
|
||||
|
||||
M1= 0x52 ,0x6e ,0x8c ,0x02 ,0x26 ,0xc0 ,0xf4 ,0x47 , C1= 0x0
|
||||
M2= 0x95 ,0x45 ,0x66 ,0xf5 ,0x9d ,0xe7 ,0x84 ,0x15 , C2= 0xec
|
||||
|
||||
M1= 0x0c ,0x5e ,0xd2 ,0xa6 ,0xbc ,0xa8 ,0x12 ,0xbf , C1= 0x0
|
||||
M2= 0x87 ,0x25 ,0xe0 ,0x07 ,0x72 ,0x82 ,0xb9 ,0xdf , C2= 0x58
|
||||
|
||||
M1= 0xc6 ,0xac ,0x18 ,0x9e ,0x5a ,0x4e ,0x12 ,0x95 , C1= 0x0
|
||||
M2= 0x01 ,0x5d ,0x26 ,0x88 ,0xcc ,0xb3 ,0x36 ,0x96 , C2= 0xd8
|
||||
|
||||
M1= 0x3c ,0xaa ,0xe2 ,0x90 ,0xb2 ,0x78 ,0x3e ,0x2b , C1= 0x0
|
||||
M2= 0x0e ,0x43 ,0x91 ,0x08 ,0xa3 ,0x93 ,0x70 ,0x6e , C2= 0xbc
|
||||
|
||||
M1= 0x28 ,0x58 ,0xf6 ,0x76 ,0x8a ,0x40 ,0x3e ,0xf3 , C1= 0x0
|
||||
M2= 0x81 ,0xfd ,0x57 ,0x8e ,0xdb ,0x6d ,0xf6 ,0x2e , C2= 0xab
|
||||
|
||||
```
|
||||
## 参考:
|
||||
|
||||
1. [zuc sbox with aesni](https://gist.github.com/emmansun/ae4677d71c75ff8407d5f5b3a884f5d2), This is the pure golang code to study ZUC implementation with AESENCLAST/AESE instruction.
|
||||
|
Loading…
x
Reference in New Issue
Block a user