Updated sm2_z256_loong64.S 代码分析 (markdown)

Sun Yimin 2025-10-09 09:57:01 +08:00
parent 6d68c38177
commit 3b010e68ba

@ -68,11 +68,9 @@ or $a2, $a2, $a1
**实现思路**
1. 可参考https://github.com/emmansun/gmsm/wiki/SM2-WWMM-(2)
$T_2=T_1 \ast P=t_0 \ast P= t_0 \ast (2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1))$
$T_2=t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} - t_0$
$T_3=T + T_2=t_4 \ast 2^{256} + t_3 \ast 2^{192} + t_2 \ast 2^{128} + t_1 \ast 2^{64} + t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} $
$T_3=(t_4+t_0) \ast 2^{256}+(t_3 - t_0 \ast 2^{32}) \ast 2^{192} + t_2 \ast 2^{128} + (t_1 + t_0 - t_0 \ast 2^{32}) \ast 2^{64} $
$T_3=(t_4+t_0-t_0>>32) \ast 2^{256}+(t_3 - t_0<<32) \ast 2^{192} + (t_2 - t_0>>32) \ast 2^{128} + (t_1 + t_0 - t_0<<32) \ast 2^{64} $
$T_2=(t_0-t_0>>32) \ast 2^{256}+(0 - t_0<<32) \ast 2^{192} + (0 - t_0>>32) \ast 2^{128} + (t_0 - t_0<<32) \ast 2^{64} - t_0$
$T_3=T + T_2=(t_4+t_0-t_0>>32) \ast 2^{256}+(t_3 - t_0<<32) \ast 2^{192} + (t_2 - t_0>>32) \ast 2^{128} + (t_1 + t_0 - t_0<<32) \ast 2^{64} $
注释:这里 $t_0<<32$ $t_0 \ast 2^{32}$ 的低64位 $t_0>>32$ 是 $t_0 \ast 2^{32}$ 的高64位。