mirror of
https://github.com/emmansun/gmsm.git
synced 2025-10-14 07:10:45 +08:00
Updated sm2_z256_loong64.S 代码分析 (markdown)
parent
6d68c38177
commit
3b010e68ba
@ -66,13 +66,11 @@ or $a2, $a2, $a1
|
||||
按字蒙哥马利模约减乘法(WW-MM),计算 `(t0,t1,t2,t3) = (a4,a5,a6,a7) * (t0,t1,t2,t3)`。
|
||||
|
||||
**实现思路**:
|
||||
1. 可参考https://github.com/emmansun/gmsm/wiki/SM2-WWMM-(2)
|
||||
1. 可参考https://github.com/emmansun/gmsm/wiki/SM2-WWMM-(2)
|
||||
$T_2=T_1 \ast P=t_0 \ast P= t_0 \ast (2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1))$
|
||||
$T_2=t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} - t_0$
|
||||
|
||||
$T_3=T + T_2=t_4 \ast 2^{256} + t_3 \ast 2^{192} + t_2 \ast 2^{128} + t_1 \ast 2^{64} + t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} $
|
||||
$T_3=(t_4+t_0) \ast 2^{256}+(t_3 - t_0 \ast 2^{32}) \ast 2^{192} + t_2 \ast 2^{128} + (t_1 + t_0 - t_0 \ast 2^{32}) \ast 2^{64} $
|
||||
$T_3=(t_4+t_0-t_0>>32) \ast 2^{256}+(t_3 - t_0<<32) \ast 2^{192} + (t_2 - t_0>>32) \ast 2^{128} + (t_1 + t_0 - t_0<<32) \ast 2^{64} $
|
||||
$T_2=(t_0-t_0>>32) \ast 2^{256}+(0 - t_0<<32) \ast 2^{192} + (0 - t_0>>32) \ast 2^{128} + (t_0 - t_0<<32) \ast 2^{64} - t_0$
|
||||
$T_3=T + T_2=(t_4+t_0-t_0>>32) \ast 2^{256}+(t_3 - t_0<<32) \ast 2^{192} + (t_2 - t_0>>32) \ast 2^{128} + (t_1 + t_0 - t_0<<32) \ast 2^{64} $
|
||||
注释:这里 $t_0<<32$ 是 $t_0 \ast 2^{32}$ 的低64位, $t_0>>32$ 是 $t_0 \ast 2^{32}$ 的高64位。
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user