diff --git a/SM3性能优化.md b/SM3性能优化.md index f82caf8..0962212 100644 --- a/SM3性能优化.md +++ b/SM3性能优化.md @@ -1,20 +1,23 @@ 最近对SM3的性能进行了优化,主要包括: + * 纯golang版本,减少W,W'预计算;避免使用条件判断。 * 三月初实现了针对AMD64架构的ASM版本。 下一步,看看能否实现使用AVX2指令集进行优化。 +# SHA256 SIMD Execution + 下面是SHA256 message scheduler SIMD实现,四轮算出下一个4个DWORDs. // Wt = SIGMA1(Wt-2) + Wt-7 + SIGMA0(Wt-15) + Wt-16; for 16 <= t <= 63 // SIGMA0(x) = ROTR(7,x) XOR ROTR(18,x) XOR SHR(3,x) // SIGMA1(x) = ROTR(17,x) XOR ROTR(19,x) XOR SHR(10,x) - - // Transpose data into high/low parts - VPERM2I128 $0x20, XTMP2, XTMP0, XDWORD0 // w3, w2, w1, w0 - VPERM2I128 $0x31, XTMP2, XTMP0, XDWORD1 // w7, w6, w5, w4 - VPERM2I128 $0x20, XTMP3, XTMP1, XDWORD2 // w11, w10, w9, w8 - VPERM2I128 $0x31, XTMP3, XTMP1, XDWORD3 // w15, w14, w13, w12 + + // Transpose data into high/low parts + VPERM2I128 $0x20, XTMP2, XTMP0, XDWORD0 // w3, w2, w1, w0 + VPERM2I128 $0x31, XTMP2, XTMP0, XDWORD1 // w7, w6, w5, w4 + VPERM2I128 $0x20, XTMP3, XTMP1, XDWORD2 // w11, w10, w9, w8 + VPERM2I128 $0x31, XTMP3, XTMP1, XDWORD3 // w15, w14, w13, w12 VPALIGNR $4, XDWORD2, XDWORD3, XTMP0; \ // XTMP0 = W[-7] = {w12,w11,w10,w9} @@ -24,7 +27,7 @@ VPSLLD $(32-7), XTMP1, XTMP3; \ // XTMP3 = W[-15] << 25 = {w4<<25,w3<<25,w2<<25,w1<<25} VPOR XTMP2, XTMP3, XTMP3; \ // XTMP3 = W[-15] ror 7 = {ROTR(7,w4),ROTR(7,w3),ROTR(7,w2),ROTR(7,w1)} VPSRLD $18, XTMP1, XTMP2; - + VPSRLD $3, XTMP1, XTMP4; \ // XTMP4 = W[-15] >> 3 VPSLLD $(32-18), XTMP1, XTMP1; \ // why no VPOR? VPXOR XTMP1, XTMP3, XTMP3; \ @@ -33,7 +36,7 @@ VPSHUFD $0xFA, XDWORD3, XTMP2; \ // XTMP2 = W[-2] {BBAA} {w15,w15,w14,w14} VPADDD XTMP1, XTMP0, XTMP0; \ // XTMP0 = W[-16] + W[-7] + s0 VPSRLD $10, XTMP2, XTMP4 // XTMP4 = W[-2] >> 10 {BBAA} - + VPSRLQ $19, XTMP2, XTMP3; \ // XTMP3 = W[-2] ror 19 {xBxA} VPSRLQ $17, XTMP2, XTMP2; \ // XTMP2 = W[-2] ror 17 {xBxA} VPXOR XTMP3, XTMP2, XTMP2; \ @@ -41,7 +44,7 @@ VPSHUFB shuff_00BA<>(SB), XTMP4, XTMP4;\ // XTMP4 = s1 {00BA} VPADDD XTMP4, XTMP0, XTMP0; \ // XTMP0 = {..., ..., W[1], W[0]} VPSHUFD $0x50, XTMP0, XTMP2; \ // XTMP2 = W[-2] {DDCC} - + VPSRLD $10, XTMP2, XTMP5; \ // XTMP5 = W[-2] >> 10 {DDCC} VPSRLQ $19, XTMP2, XTMP3; \ // XTMP3 = W[-2] ror 19 {xDxC} VPSRLQ $17, XTMP2, XTMP2; \ // XTMP2 = W[-2] ror 17 {xDxC} @@ -51,21 +54,24 @@ VPADDD XTMP0, XTMP5, XDWORD0; \ // XDWORD0 = {W[3], W[2], W[1], W[0]} SM3的message scheduler有两个显著差别: + 1. Wi+3依赖Wi,所以也和SHA256类似,不能一次生成四个DWORDs,但和SHA256不完全一样。 1. 比SHA256需要多算4个DWORDs。 Intel 指令参考: https://software.intel.com/sites/landingpage/IntrinsicsGuide/ -SM3的第一版,比SHA256复杂: +# SM3 SIMD Execution + +SM3的第一版,比SHA256复杂,不知道有没有继续优化的空间。 // Wj ← P1(Wj−16 ⊕ Wj−9 ⊕ (Wj−3 ≪ 15)) ⊕ (Wj−13 ≪ 7) ⊕ Wj−6 - // Transpose data into high/low parts - VPERM2I128 $0x20, XTMP2, XTMP0, XDWORD0 // w3, w2, w1, w0 - VPERM2I128 $0x31, XTMP2, XTMP0, XDWORD1 // w7, w6, w5, w4 - VPERM2I128 $0x20, XTMP3, XTMP1, XDWORD2 // w11, w10, w9, w8 - VPERM2I128 $0x31, XTMP3, XTMP1, XDWORD3 // w15, w14, w13, w12 - + // Transpose data into high/low parts + VPERM2I128 $0x20, XTMP2, XTMP0, XDWORD0 // w3, w2, w1, w0 + VPERM2I128 $0x31, XTMP2, XTMP0, XDWORD1 // w7, w6, w5, w4 + VPERM2I128 $0x20, XTMP3, XTMP1, XDWORD2 // w11, w10, w9, w8 + VPERM2I128 $0x31, XTMP3, XTMP1, XDWORD3 // w15, w14, w13, w12 + VPALIGNR $12, XDWORD0, XDWORD1, XTMP0; \ // XTMP0 = W[-13] = {w6,w5,w4,w3} VPSLLD $7, XTMP0, XTMP1; \ VPSRLD $(32-7), XTMP0, XTMP0; \ @@ -75,7 +81,7 @@ SM3的第一版,比SHA256复杂: VPALIGNR $12, XDWORD1, XDWORD2, XTMP1; \ // XTMP1 = W[-9] = {w10,w9,w8,w7} VPXOR XDWORD0, XTMP1, XTMP1; \ // XTMP1 = W[-9] XOR W[-16] VPSHUFD $0xA5, XDWORD3, XTMP2; \ // XTMP2 = W[-3] {BBAA} {w14,w14,w13,w13} - + VPSLLQ $15, XTMP2, XTMP2; \ // XTMP2 = W[-3] rol 15 {xBxA} VPSHUFB shuff_00BA<>(SB), XTMP2, XTMP2;\ // XTMP2 = W[-3] rol 15 {00BA} VPXOR XTMP1, XTMP2, XTMP2; \ // XTMP2 = W[-9] XOR W[-16] XOR (W[-3] rol 15) {xxBA} @@ -85,7 +91,7 @@ SM3的第一版,比SHA256复杂: VPXOR XTMP2, XTMP4, XTMP4; \ // XTMP4 = XTMP2 XOR (XTMP2 rol 15 {xxBA}) VPSLLD $23, XTMP2, XTMP3; \ VPSRLD $(32-23), XTMP2, XTMP5; \ - + VPOR XTMP3, XTMP5, XTMP5; \ //XTMP5 = XTMP2 rol 23 {xxBA} VPXOR XTMP4, XTMP5, XTMP4; \ // XTMP4 = XTMP2 XOR (XTMP2 rol 15 {xxBA}) XOR (XTMP2 rol 23 {xxBA}) VPXOR XTMP4, XTMP0, XTMP2; \ // XTMP2 = {..., ..., W[1], W[0]} @@ -95,7 +101,7 @@ SM3的第一版,比SHA256复杂: VPSHUFB shuff_DC00<>(SB), XTMP4, XTMP4;\ // XTMP4 = W[-3] rol 15 {DC00} VPXOR XTMP1, XTMP4, XTMP4; \ // XTMP4 = W[-9] XOR W[-16] XOR (W[-3] rol 15) {DCxx} VPSLLD $15, XTMP4, XTMP5; \ - + VPSRLD $(32-15), XTMP4, XTMP3; \ VPOR XTMP3, XTMP5, XTMP3; \ // XTMP3 = XTMP4 rol 15 {DCxx} VPXOR XTMP3, XTMP4, XTMP3; \ // XTMP3 = XTMP4 XOR (XTMP4 rol 15 {DCxx}) @@ -107,3 +113,47 @@ SM3的第一版,比SHA256复杂: VPALIGNR $8, XTMP1, XTMP2, XTMP3; \ // XTMP3 = {W[1], W[0], W[3], W[2]} VPSHUFD $0x4E, XTMP3, XDWORD0; \ // XDWORD0 = {W[3], W[2], W[1], W[0]} +由于要算**52**个DWORDs,所以 + +| Ingteger Execution | SIMD Execution | +| ---------------------- | ---------------------------- | +| Execute Rounds 0...15 | Compute Message DWORDs 16…31 | +| Execute Rounds 16...31 | Compute Message DWORDs 32…47 | +| Execute Rounds 32...47 | Compute Message DWORDs 48…63 | +| Execute Rounds 48...63 | Compute Message DWORDs 64…67 | + +# 其它SIMD Execution + +SHA 256的64轮压缩计算中,对Kt + Wt 进行了并行计算 + + VPADDD 0*32(TBL)(SRND*1), XDWORD0, XFER + VMOVDQU XFER, (_XFER + 0*32)(SP)(SRND*1) + +SM3可以对Wt XOR Wt+4进行并行计算, + + VPXOR XDWORD0, XDWORD1, XFER + VMOVDQU XFER, (_XFER + 0*32)(SP)(SRND*1) + +但其依然需要Wt, 如何传入和使用Wt呢?难道把Wt和Wt'一起放到栈,譬如W0,W1,W2,W3,W0',W1',W2',W3', + + VMOVDQU XDWORD0, (_XFER + 0*32)(SP)(SRND*1) + VPXOR XDWORD0, XDWORD1, XFER + VMOVDQU XFER, (_XFER + 1*32)(SP)(SRND*1) + +没有大改变SHA 256 AVX2的主流程,但是栈的处理需要改变。 + +# T常量处理 + +这个比较麻烦,要是作为参数传入,那就没法和SHA 256一样循环处理,必须把所有压缩轮都列出来。 + +# RORXL + +这是循环右移,SM3使用循环左移,没看到有ROLXL这样的指令,应该能传入负数来实现, + + + +实在不行只能用MOVL + ROLL来处理,但性能就没啥提高了。 + +# 主流程 + +如果只有(只剩)一个block (64字节),则只处理这个block,否则2个block(128字节)处理,两个block并行处理message scheduler。 \ No newline at end of file