Updated MFMM (markdown)

Sun Yimin 2024-02-21 17:00:49 +08:00
parent 5e93aeb666
commit 1aa9dfcce9

22
MFMM.md

@ -2,9 +2,6 @@ MFMM=[Montgomery Friendly modules Montgomery Multiplication](https://eprint.iacr
首先NIST P256 / SM2 256 的素数P都是Montgomery Friendly modules。 首先NIST P256 / SM2 256 的素数P都是Montgomery Friendly modules。
SM2 256 的素数P=0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff也可以表示为
$P = 2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1)$
输入: 输入:
X, Y都是Montgomery数值表示 X, Y都是Montgomery数值表示
@ -285,3 +282,22 @@ acc0, acc1, acc2, acc3, acc4, acc5是64位寄存器
BenchmarkMoreThan32_P256SM2-2 4550 263296 ns/op BenchmarkMoreThan32_P256SM2-2 4550 263296 ns/op
PASS PASS
ok github.com/emmansun/gmsm/sm2 4.753s ok github.com/emmansun/gmsm/sm2 4.753s
### 续
SM2 256 的素数P=0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff也可以表示为
$P = 2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1)$
这样,可以通过移位和加减操作来实现模约减。
假设:
$T=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + t_4 \ast 2^{256} + t_3 \ast 2^{192} + t_2 \ast 2^{128} + t_1 \ast 2^{64} + t_0 $
则共四次约减,第一次约减为:
$T_1=t_0$
$T_2=T_1 \ast P=t_0 \ast P= t_0 \ast (2^{256}-(2^{32} \ast 2^{192} + 0 \ast 2^{128} + (2^{32} - 1) \ast 2^{64} + 1))$
$T_2=t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} - t_0$
$T_3=T + T_2=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + t_4 \ast 2^{256} + t_3 \ast 2^{192} + t_2 \ast 2^{128} + t_1 \ast 2^{64} + t_0 \ast 2^{256} - t_0 \ast 2^{32} \ast 2^{192} - t_0 \ast (2^{32} - 1) \ast 2^{64} - t_0 $
$T_3=t_7 \ast 2^{448} + t_6 \ast 2^{384} + t_5 \ast 2^{320} + (t_4+t_0) \ast 2^{256}+(t_3 - t_0 \ast 2^{32}) \ast 2^{192} + t_2 \ast 2^{128} + (t_1 + t_0 - t_0 \ast 2^{32}) \ast 2^{64} $