From 02372c7457ebeb5c2efcfc9806e73d6fad1c44e3 Mon Sep 17 00:00:00 2001 From: Sun Yimin Date: Wed, 16 Apr 2025 08:33:21 +0000 Subject: [PATCH] =?UTF-8?q?Updated=20=E5=AE=9E=E7=8E=B0Kyber=E6=89=80?= =?UTF-8?q?=E9=9C=80=E7=9A=84=E5=A4=9A=E9=A1=B9=E5=BC=8F=E5=92=8C=E7=BA=BF?= =?UTF-8?q?=E6=80=A7=E4=BB=A3=E6=95=B0=E7=9F=A5=E8=AF=86=20(markdown)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 实现Kyber所需的多项式和线性代数知识.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/实现Kyber所需的多项式和线性代数知识.md b/实现Kyber所需的多项式和线性代数知识.md index b25cad9..9e27159 100644 --- a/实现Kyber所需的多项式和线性代数知识.md +++ b/实现Kyber所需的多项式和线性代数知识.md @@ -20,8 +20,9 @@ $$f = f_0 + f_1 X + f_2 X^2 + \cdots + f_{255} X^{255}$$ $$f_0 + f_1X + f_2X^2 + \cdots + f_{255}X^{255} \in R_q$$ $$ \downarrow $$ - -$$ (f_0, f_1, f_2, ..., f_{255}) \in \mathbb{Z}_q^{256} $$ +```math +(f_0, f_1, f_2, ..., f_{255}) \in \mathbb{Z}_q^{256} +``` 每个系数都适合放在一个`uint16`中,所以你可以为多项式编写一个类型,比如`[256]uint16`。