gmsm/sm9/twist.go
2022-06-07 17:13:23 +08:00

281 lines
5.8 KiB
Go

package sm9
import "math/big"
// twistPoint implements the elliptic curve y²=x³+5/ξ (y²=x³+5i) over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t gfP2
}
var twistB = &gfP2{
*newGFp(5),
*zero,
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
gfP2{
*fromBigInt(bigFromHex("85AEF3D078640C98597B6027B441A01FF1DD2C190F5E93C454806C11D8806141")),
*fromBigInt(bigFromHex("3722755292130B08D2AAB97FD34EC120EE265948D19C17ABF9B7213BAF82D65B")),
},
gfP2{
*fromBigInt(bigFromHex("17509B092E845C1266BA0D262CBEE6ED0736A96FA347C8BD856DC76B84EBEB96")),
*fromBigInt(bigFromHex("A7CF28D519BE3DA65F3170153D278FF247EFBA98A71A08116215BBA5C999A7C7")),
},
gfP2{*newGFp(0), *newGFp(1)},
gfP2{*newGFp(0), *newGFp(1)},
}
func (c *twistPoint) String() string {
c.MakeAffine()
x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *twistPoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP2{}, &gfP2{}
y2.Square(&c.y)
x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
return *y2 == *x3
}
func (c *twistPoint) SetInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z12 := (&gfP2{}).Square(&a.z)
z22 := (&gfP2{}).Square(&b.z)
u1 := (&gfP2{}).Mul(&a.x, z22)
u2 := (&gfP2{}).Mul(&b.x, z12)
t := (&gfP2{}).Mul(&b.z, z22)
s1 := (&gfP2{}).Mul(&a.y, t)
t.Mul(&a.z, z12)
s2 := (&gfP2{}).Mul(&b.y, t)
h := (&gfP2{}).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := (&gfP2{}).Square(t)
j := (&gfP2{}).Mul(h, i)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a)
return
}
r := (&gfP2{}).Add(t, t)
v := (&gfP2{}).Mul(u1, i)
t4 := (&gfP2{}).Square(r)
t.Add(v, v)
t6 := (&gfP2{}).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, &c.x) // t7
t4.Mul(s1, j) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
c.y.Sub(t4, t6)
t.Add(&a.z, &b.z) // t11
t4.Square(t) // t12
t.Sub(t4, z12) // t13
t4.Sub(t, z22) // t14
c.z.Mul(t4, h)
}
func (c *twistPoint) Double(a *twistPoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := (&gfP2{}).Square(&a.x)
B := (&gfP2{}).Square(&a.y)
C := (&gfP2{}).Square(B)
t := (&gfP2{}).Add(&a.x, B)
t2 := (&gfP2{}).Square(t)
t.Sub(t2, A)
t2.Sub(t, C)
d := (&gfP2{}).Add(t2, t2)
t.Add(A, A)
e := (&gfP2{}).Add(t, A)
f := (&gfP2{}).Square(e)
t.Add(d, d)
c.x.Sub(f, t)
c.z.Mul(&a.y, &a.z)
c.z.Add(&c.z, &c.z)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, &c.x)
t2.Mul(e, &c.y)
c.y.Sub(t2, t)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
sum, t := &twistPoint{}, &twistPoint{}
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *twistPoint) MakeAffine() {
if c.z.IsOne() {
return
} else if c.z.IsZero() {
c.x.SetZero()
c.y.SetOne()
c.t.SetZero()
return
}
zInv := (&gfP2{}).Invert(&c.z)
t := (&gfP2{}).Mul(&c.y, zInv)
zInv2 := (&gfP2{}).Square(zInv)
c.y.Mul(t, zInv2)
t.Mul(&c.x, zInv2)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
}
func (c *twistPoint) Neg(a *twistPoint) {
c.x.Set(&a.x)
c.y.Neg(&a.y)
c.z.Set(&a.z)
c.t.SetZero()
}
// code logic is form https://github.com/guanzhi/GmSSL/blob/develop/src/sm9_alg.c
// the value is not same as p*a
func (c *twistPoint) Frobenius(a *twistPoint) {
c.x.Conjugate(&a.x)
c.y.Conjugate(&a.y)
c.z.Conjugate(&a.z)
c.z.MulScalar(&a.z, frobConstant)
c.t.Square(&a.z)
}
func (c *twistPoint) FrobeniusP2(a *twistPoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.MulScalar(&a.z, wToP2Minus1)
c.t.Square(&a.z)
}
func (c *twistPoint) NegFrobeniusP2(a *twistPoint) {
c.x.Set(&a.x)
c.y.Neg(&a.y)
c.z.MulScalar(&a.z, wToP2Minus1)
c.t.Square(&a.z)
}
/*
//code logic is from https://github.com/miracl/MIRACL/blob/master/source/curve/pairing/bn_pair.cpp
func (c *twistPoint) Frobenius(a *twistPoint) {
w, r, frob := &gfP2{}, &gfP2{}, &gfP2{}
frob.SetFrobConstant()
w.Square(frob)
r.Conjugate(&twistGen.x)
r.Mul(r, w)
c.x.Set(r)
r.Conjugate(&twistGen.y)
r.Mul(r, frob)
r.Mul(r, w)
c.y.Set(r)
r.Conjugate(&twistGen.z)
c.z.Set(r)
r.Square(&c.z)
c.t.Set(r)
}
func (c *twistPoint) FrobeniusP2(a *twistPoint) {
ret := &twistPoint{}
ret.Frobenius(a)
c.Frobenius(ret)
}
*/
/*
// code logic from https://github.com/cloudflare/bn256/blob/master/optate.go
func (c *twistPoint) Frobenius(a *twistPoint) {
r := &gfP2{}
r.Conjugate(&a.x)
r.MulScalar(r, xiToPMinus1Over3)
c.x.Set(r)
r.Conjugate(&a.y)
r.MulScalar(r, xiToPMinus1Over2)
c.y.Set(r)
c.z.SetOne()
c.t.SetOne()
}
func (c *twistPoint) FrobeniusP2(a *twistPoint) {
c.x.MulScalar(&a.x, xiToPSquaredMinus1Over3)
c.y.Neg(&a.y)
c.z.SetOne()
c.t.SetOne()
}
func (c *twistPoint) NegFrobeniusP2(a *twistPoint) {
c.x.MulScalar(&a.x, xiToPSquaredMinus1Over3)
c.y.Set(&a.y)
c.z.SetOne()
c.t.SetOne()
}
*/