gmsm/sm2/sm2.go

937 lines
27 KiB
Go

// Package sm2 implements ShangMi(SM) sm2 digital signature, public key encryption and key exchange algorithms.
package sm2
// Further references:
// [NSA]: Suite B implementer's guide to FIPS 186-3
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.4503&rep=rep1&type=pdf
// [SECG]: SECG, SEC1
// http://www.secg.org/sec1-v2.pdf
// [GM/T]: SM2 GB/T 32918.2-2016, GB/T 32918.4-2016
//
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/sha512"
_subtle "crypto/subtle"
"errors"
"fmt"
"io"
"math/big"
"sync"
"github.com/emmansun/gmsm/ecdh"
"github.com/emmansun/gmsm/internal/bigmod"
"github.com/emmansun/gmsm/internal/randutil"
_sm2ec "github.com/emmansun/gmsm/internal/sm2ec"
"github.com/emmansun/gmsm/internal/subtle"
"github.com/emmansun/gmsm/kdf"
"github.com/emmansun/gmsm/sm2/sm2ec"
"github.com/emmansun/gmsm/sm3"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
const (
uncompressed byte = 0x04
compressed02 byte = 0x02
compressed03 byte = compressed02 | 0x01
hybrid06 byte = 0x06
hybrid07 byte = hybrid06 | 0x01
)
// PrivateKey represents an ECDSA SM2 private key.
// It implemented both crypto.Decrypter and crypto.Signer interfaces.
type PrivateKey struct {
ecdsa.PrivateKey
}
type pointMarshalMode byte
const (
//MarshalUncompressed uncompressed mashal mode
MarshalUncompressed pointMarshalMode = iota
//MarshalCompressed compressed mashal mode
MarshalCompressed
//MarshalHybrid hybrid mashal mode
MarshalHybrid
)
type ciphertextSplicingOrder byte
const (
C1C3C2 ciphertextSplicingOrder = iota
C1C2C3
)
type ciphertextEncoding byte
const (
ENCODING_PLAIN ciphertextEncoding = iota
ENCODING_ASN1
)
// EncrypterOpts encryption options
type EncrypterOpts struct {
ciphertextEncoding ciphertextEncoding
pointMarshalMode pointMarshalMode
ciphertextSplicingOrder ciphertextSplicingOrder
}
// DecrypterOpts decryption options
type DecrypterOpts struct {
ciphertextEncoding ciphertextEncoding
cipherTextSplicingOrder ciphertextSplicingOrder
}
// NewPlainEncrypterOpts creates a SM2 non-ASN1 encrypter options.
func NewPlainEncrypterOpts(marhsalMode pointMarshalMode, splicingOrder ciphertextSplicingOrder) *EncrypterOpts {
return &EncrypterOpts{ENCODING_PLAIN, marhsalMode, splicingOrder}
}
// NewPlainDecrypterOpts creates a SM2 non-ASN1 decrypter options.
func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts {
return &DecrypterOpts{ENCODING_PLAIN, splicingOrder}
}
func toBytes(curve elliptic.Curve, value *big.Int) []byte {
byteLen := (curve.Params().BitSize + 7) >> 3
result := make([]byte, byteLen)
value.FillBytes(result)
return result
}
var defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2}
var ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2}
var ASN1DecrypterOpts = &DecrypterOpts{ENCODING_ASN1, C1C3C2}
// directSigning is a standard Hash value that signals that no pre-hashing
// should be performed.
var directSigning crypto.Hash = 0
// Signer SM2 special signer
type Signer interface {
SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error)
}
// SM2SignerOption implements crypto.SignerOpts interface.
// It is specific for SM2, used in private key's Sign method.
type SM2SignerOption struct {
uid []byte
forceGMSign bool
}
// NewSM2SignerOption creates a SM2 specific signer option.
// forceGMSign - if use GM specific sign logic, if yes, should pass raw message to sign.
// uid - if forceGMSign is true, then you can pass uid, if no uid is provided, system will use default one.
func NewSM2SignerOption(forceGMSign bool, uid []byte) *SM2SignerOption {
opt := &SM2SignerOption{
uid: uid,
forceGMSign: forceGMSign,
}
if forceGMSign && len(uid) == 0 {
opt.uid = defaultUID
}
return opt
}
// DefaultSM2SignerOpts uses default UID and forceGMSign is true.
var DefaultSM2SignerOpts = NewSM2SignerOption(true, nil)
func (*SM2SignerOption) HashFunc() crypto.Hash {
return directSigning
}
// FromECPrivateKey convert an ecdsa private key to SM2 private key.
func (priv *PrivateKey) FromECPrivateKey(key *ecdsa.PrivateKey) (*PrivateKey, error) {
if key.Curve != sm2ec.P256() {
return nil, errors.New("sm2: it's NOT a sm2 curve private key")
}
priv.PrivateKey = *key
return priv, nil
}
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(*PrivateKey)
if !ok {
return false
}
return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
}
// bigIntEqual reports whether a and b are equal leaking only their bit length
// through timing side-channels.
func bigIntEqual(a, b *big.Int) bool {
return _subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
}
// Sign signs digest with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016.
// The opts argument is currently used for SM2SignerOption checking only.
// If the opts argument is SM2SignerOption and its ForceGMSign is true,
// digest argument will be treated as raw data and UID will be taken from opts.
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
return SignASN1(rand, priv, digest, opts)
}
// SignWithSM2 signs uid, msg with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016.
// Deprecated: please use Sign method directly.
func (priv *PrivateKey) SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) {
return priv.Sign(rand, msg, NewSM2SignerOption(true, uid))
}
// Decrypt decrypts ciphertext msg to plaintext.
// The opts argument should be appropriate for the primitive used.
// Compliance with GB/T 32918.4-2016 chapter 7.
func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
var sm2Opts *DecrypterOpts
sm2Opts, _ = opts.(*DecrypterOpts)
return decrypt(priv, msg, sm2Opts)
}
const maxRetryLimit = 100
var (
errCiphertextTooShort = errors.New("sm2: ciphertext too short")
)
// EncryptASN1 sm2 encrypt and output ASN.1 result, compliance with GB/T 32918.4-2016.
func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) {
return Encrypt(random, pub, msg, ASN1EncrypterOpts)
}
// Encrypt sm2 encrypt implementation, compliance with GB/T 32918.4-2016.
func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
//A3, requirement is to check if h*P is infinite point, h is 1
if pub.X.Sign() == 0 && pub.Y.Sign() == 0 {
return nil, errors.New("sm2: public key point is the infinity")
}
if len(msg) == 0 {
return nil, nil
}
if opts == nil {
opts = defaultEncrypterOpts
}
switch pub.Curve.Params() {
case P256().Params():
return encryptSM2EC(p256(), pub, random, msg, opts)
default:
return encryptLegacy(random, pub, msg, opts)
}
}
func encryptSM2EC(c *sm2Curve, pub *ecdsa.PublicKey, random io.Reader, msg []byte, opts *EncrypterOpts) ([]byte, error) {
Q, err := c.pointFromAffine(pub.X, pub.Y)
if err != nil {
return nil, err
}
var retryCount int = 0
for {
k, C1, err := randomPoint(c, random)
if err != nil {
return nil, err
}
C2, err := Q.ScalarMult(Q, k.Bytes(c.N))
if err != nil {
return nil, err
}
C2Bytes := C2.Bytes()[1:]
c2 := kdf.Kdf(sm3.New(), C2Bytes, len(msg))
if subtle.ConstantTimeAllZero(c2) {
retryCount++
if retryCount > maxRetryLimit {
return nil, fmt.Errorf("sm2: A5, failed to calculate valid t, tried %v times", retryCount)
}
continue
}
//A6, C2 = M + t;
subtle.XORBytes(c2, msg, c2)
//A7, C3 = hash(x2||M||y2)
md := sm3.New()
md.Write(C2Bytes[:len(C2Bytes)/2])
md.Write(msg)
md.Write(C2Bytes[len(C2Bytes)/2:])
c3 := md.Sum(nil)
if opts.ciphertextEncoding == ENCODING_PLAIN {
return encodingCiphertext(opts, C1, c2, c3)
}
return encodingCiphertextASN1(C1, c2, c3)
}
}
func encodingCiphertext(opts *EncrypterOpts, C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) {
var c1 []byte
switch opts.pointMarshalMode {
case MarshalCompressed:
c1 = C1.BytesCompressed()
default:
c1 = C1.Bytes()
}
if opts.ciphertextSplicingOrder == C1C3C2 {
// c1 || c3 || c2
return append(append(c1, c3...), c2...), nil
}
// c1 || c2 || c3
return append(append(c1, c2...), c3...), nil
}
func encodingCiphertextASN1(C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) {
c1 := C1.Bytes()
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
addASN1IntBytes(b, c1[1:len(c1)/2+1])
addASN1IntBytes(b, c1[len(c1)/2+1:])
b.AddASN1OctetString(c3)
b.AddASN1OctetString(c2)
})
return b.Bytes()
}
// GenerateKey generates a public and private key pair.
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
c := p256()
k, Q, err := randomPoint(c, rand)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c.curve
priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q)
if err != nil {
return nil, err
}
return priv, nil
}
// Decrypt sm2 decrypt implementation by default DecrypterOpts{C1C3C2}.
// Compliance with GB/T 32918.4-2016.
func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
return decrypt(priv, ciphertext, nil)
}
// ErrDecryption represents a failure to decrypt a message.
// It is deliberately vague to avoid adaptive attacks.
var ErrDecryption = errors.New("sm2: decryption error")
func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
ciphertextLen := len(ciphertext)
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
return nil, errCiphertextTooShort
}
switch priv.Curve.Params() {
case P256().Params():
return decryptSM2EC(p256(), priv, ciphertext, opts)
default:
return decryptLegacy(priv, ciphertext, opts)
}
}
func decryptSM2EC(c *sm2Curve, priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
C1, c2, c3, err := parseCiphertext(c, ciphertext, opts)
if err != nil {
return nil, ErrDecryption
}
d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
if err != nil {
return nil, ErrDecryption
}
C2, err := C1.ScalarMult(C1, d.Bytes(c.N))
if err != nil {
return nil, ErrDecryption
}
C2Bytes := C2.Bytes()[1:]
msgLen := len(c2)
msg := kdf.Kdf(sm3.New(), C2Bytes, msgLen)
if subtle.ConstantTimeAllZero(c2) {
return nil, ErrDecryption
}
//B5, calculate msg = c2 ^ t
subtle.XORBytes(msg, c2, msg)
md := sm3.New()
md.Write(C2Bytes[:len(C2Bytes)/2])
md.Write(msg)
md.Write(C2Bytes[len(C2Bytes)/2:])
u := md.Sum(nil)
if _subtle.ConstantTimeCompare(u, c3) == 1 {
return msg, nil
}
return nil, ErrDecryption
}
func parseCiphertext(c *sm2Curve, ciphertext []byte, opts *DecrypterOpts) (*_sm2ec.SM2P256Point, []byte, []byte, error) {
bitSize := c.curve.Params().BitSize
// Encode the coordinates and let SetBytes reject invalid points.
byteLen := (bitSize + 7) / 8
splicingOrder := C1C3C2
if opts != nil {
splicingOrder = opts.cipherTextSplicingOrder
}
b := ciphertext[0]
switch b {
case uncompressed:
if len(ciphertext) <= 1+2*byteLen+sm3.Size {
return nil, nil, nil, errCiphertextTooShort
}
C1, err := c.newPoint().SetBytes(ciphertext[:1+2*byteLen])
if err != nil {
return nil, nil, nil, err
}
c2, c3 := parseCiphertextC2C3(ciphertext[1+2*byteLen:], splicingOrder)
return C1, c2, c3, nil
case compressed02, compressed03:
C1, err := c.newPoint().SetBytes(ciphertext[:1+byteLen])
if err != nil {
return nil, nil, nil, err
}
c2, c3 := parseCiphertextC2C3(ciphertext[1+byteLen:], splicingOrder)
return C1, c2, c3, nil
case byte(0x30):
return parseCiphertextASN1(c, ciphertext)
default:
return nil, nil, nil, errors.New("sm2: invalid/unsupport ciphertext format")
}
}
func parseCiphertextC2C3(ciphertext []byte, order ciphertextSplicingOrder) ([]byte, []byte) {
if order == C1C3C2 {
return ciphertext[sm3.Size:], ciphertext[:sm3.Size]
}
return ciphertext[:len(ciphertext)-sm3.Size], ciphertext[len(ciphertext)-sm3.Size:]
}
func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) {
var (
x1, y1 = &big.Int{}, &big.Int{}
c2, c3 []byte
inner cryptobyte.String
)
input := cryptobyte.String(ciphertext)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(x1) ||
!inner.ReadASN1Integer(y1) ||
!inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) ||
!inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) ||
!inner.Empty() {
return nil, nil, nil, nil, errors.New("sm2: invalid asn1 format ciphertext")
}
return x1, y1, c2, c3, nil
}
func parseCiphertextASN1(c *sm2Curve, ciphertext []byte) (*_sm2ec.SM2P256Point, []byte, []byte, error) {
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
if err != nil {
return nil, nil, nil, err
}
C1, err := c.pointFromAffine(x1, y1)
if err != nil {
return nil, nil, nil, err
}
return C1, c2, c3, nil
}
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
// CalculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA).
// Compliance with GB/T 32918.2-2016 5.5.
//
// This function will not use default UID even the uid argument is empty.
func CalculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
uidLen := len(uid)
if uidLen >= 0x2000 {
return nil, errors.New("sm2: the uid is too long")
}
entla := uint16(uidLen) << 3
md := sm3.New()
md.Write([]byte{byte(entla >> 8), byte(entla)})
if uidLen > 0 {
md.Write(uid)
}
a := new(big.Int).Sub(pub.Params().P, big.NewInt(3))
md.Write(toBytes(pub.Curve, a))
md.Write(toBytes(pub.Curve, pub.Params().B))
md.Write(toBytes(pub.Curve, pub.Params().Gx))
md.Write(toBytes(pub.Curve, pub.Params().Gy))
md.Write(toBytes(pub.Curve, pub.X))
md.Write(toBytes(pub.Curve, pub.Y))
return md.Sum(nil), nil
}
func calculateSM2Hash(pub *ecdsa.PublicKey, data, uid []byte) ([]byte, error) {
if len(uid) == 0 {
uid = defaultUID
}
za, err := CalculateZA(pub, uid)
if err != nil {
return nil, err
}
md := sm3.New()
md.Write(za)
md.Write(data)
return md.Sum(nil), nil
}
// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the ASN.1 encoded signature.
//
// If the opts argument is instance of [*SM2SignerOption], and its ForceGMSign is true,
// then the hash will be treated as raw message.
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
if sm2Opts, ok := opts.(*SM2SignerOption); ok && sm2Opts.forceGMSign {
newHash, err := calculateSM2Hash(&priv.PublicKey, hash, sm2Opts.uid)
if err != nil {
return nil, err
}
hash = newHash
}
randutil.MaybeReadByte(rand)
csprng, err := mixedCSPRNG(rand, &priv.PrivateKey, hash)
if err != nil {
return nil, err
}
switch priv.Curve.Params() {
case P256().Params():
return signSM2EC(p256(), priv, csprng, hash)
default:
return signLegacy(priv, csprng, hash)
}
}
func signSM2EC(c *sm2Curve, priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
e := bigmod.NewNat()
hashToNat(c, e, hash)
var (
k, r, s, dp1Inv, oneNat *bigmod.Nat
R *_sm2ec.SM2P256Point
)
oneNat, err = bigmod.NewNat().SetBytes(one.Bytes(), c.N)
if err != nil {
return nil, err
}
dp1Inv, err = bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
if err != nil {
return nil, err
}
dp1Inv.Add(oneNat, c.N)
dp1Bytes, err := _sm2ec.P256OrdInverse(dp1Inv.Bytes(c.N))
if err != nil {
return nil, err
}
dp1Inv, err = bigmod.NewNat().SetBytes(dp1Bytes, c.N)
if err != nil {
panic("sm2: internal error: P256OrdInverse produced an invalid value")
}
for {
for {
k, R, err = randomPoint(c, csprng)
if err != nil {
return nil, err
}
Rx, err := R.BytesX()
if err != nil {
return nil, err
}
r, err = bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
if err != nil {
return nil, err
}
r.Add(e, c.N) // r = (Rx + e) mod N
if r.IsZero() == 0 {
t := bigmod.NewNat().Set(k)
t.Add(r, c.N)
if t.IsZero() == 0 { // if (r + k) != N then ok
break
}
}
}
s, err = bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
if err != nil {
return nil, err
}
s.Mul(r, c.N)
k.Sub(s, c.N)
k.Mul(dp1Inv, c.N)
if k.IsZero() == 0 {
break
}
}
return encodeSignature(r.Bytes(c.N), k.Bytes(c.N))
}
func encodeSignature(r, s []byte) ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
addASN1IntBytes(b, r)
addASN1IntBytes(b, s)
})
return b.Bytes()
}
// addASN1IntBytes encodes in ASN.1 a positive integer represented as
// a big-endian byte slice with zero or more leading zeroes.
func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
for len(bytes) > 0 && bytes[0] == 0 {
bytes = bytes[1:]
}
if len(bytes) == 0 {
b.SetError(errors.New("invalid integer"))
return
}
b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
if bytes[0]&0x80 != 0 {
c.AddUint8(0)
}
c.AddBytes(bytes)
})
}
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
//
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
// Caller should make sure the hash's correctness, in other words,
// the caller must pre-calculate the hash value.
func VerifyASN1(pub *ecdsa.PublicKey, hash, sig []byte) bool {
switch pub.Curve.Params() {
case P256().Params():
return verifySM2EC(p256(), pub, hash, sig)
default:
return verifyLegacy(pub, hash, sig)
}
}
func verifySM2EC(c *sm2Curve, pub *ecdsa.PublicKey, hash, sig []byte) bool {
rBytes, sBytes, err := parseSignature(sig)
if err != nil {
return false
}
Q, err := c.pointFromAffine(pub.X, pub.Y)
if err != nil {
return false
}
r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
if err != nil || r.IsZero() == 1 {
return false
}
s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
if err != nil || s.IsZero() == 1 {
return false
}
e := bigmod.NewNat()
hashToNat(c, e, hash)
t := bigmod.NewNat().Set(r)
t.Add(s, c.N)
if t.IsZero() == 1 {
return false
}
p1, err := c.newPoint().ScalarBaseMult(s.Bytes(c.N))
if err != nil {
return false
}
p2, err := Q.ScalarMult(Q, t.Bytes(c.N))
if err != nil {
return false
}
Rx, err := p1.Add(p1, p2).BytesX()
if err != nil {
return false
}
v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
if err != nil {
return false
}
v.Add(e, c.N)
return v.Equal(r) == 1
}
// VerifyASN1WithSM2 verifies the signature in ASN.1 encoding format sig of raw msg
// and uid using the public key, pub. The uid can be empty, meaning to use the default value.
//
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
func VerifyASN1WithSM2(pub *ecdsa.PublicKey, uid, msg, sig []byte) bool {
digest, err := calculateSM2Hash(pub, msg, uid)
if err != nil {
return false
}
return VerifyASN1(pub, digest, sig)
}
func parseSignature(sig []byte) (r, s []byte, err error) {
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(&r) ||
!inner.ReadASN1Integer(&s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1")
}
return r, s, nil
}
// hashToNat sets e to the left-most bits of hash, according to
// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3.
func hashToNat(c *sm2Curve, e *bigmod.Nat, hash []byte) {
// ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
// an integer modulo N. This is the absolute worst of all worlds: we still
// have to reduce, because the result might still overflow N, but to take
// the left-most bits for P-521 we have to do a right shift.
if size := c.N.Size(); len(hash) > size {
hash = hash[:size]
if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
hash = append([]byte{}, hash...)
for i := len(hash) - 1; i >= 0; i-- {
hash[i] >>= excess
if i > 0 {
hash[i] |= hash[i-1] << (8 - excess)
}
}
}
}
_, err := e.SetOverflowingBytes(hash, c.N)
if err != nil {
panic("sm2: internal error: truncated hash is too long")
}
}
// mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message
// and the private key, to protect the key in case rand fails. This is
// equivalent in security to RFC 6979 deterministic nonce generation, but still
// produces randomized signatures.
func mixedCSPRNG(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (io.Reader, error) {
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
//
// SHA2-512(priv.D || entropy || hash)[:32]
//
// The CSPRNG key is indifferentiable from a random oracle as shown in
// [Coron], the AES-CTR stream is indifferentiable from a random oracle
// under standard cryptographic assumptions (see [Larsson] for examples).
//
// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
// Get 256 bits of entropy from rand.
entropy := make([]byte, 32)
if _, err := io.ReadFull(rand, entropy); err != nil {
return nil, err
}
// Initialize an SHA-512 hash context; digest...
md := sha512.New()
md.Write(priv.D.Bytes()) // the private key,
md.Write(entropy) // the entropy,
md.Write(hash) // and the input hash;
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
// which is an indifferentiable MAC.
// Create an AES-CTR instance to use as a CSPRNG.
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
// Create a CSPRNG that xors a stream of zeros with
// the output of the AES-CTR instance.
const aesIV = "IV for ECDSA CTR"
return &cipher.StreamReader{
R: zeroReader,
S: cipher.NewCTR(block, []byte(aesIV)),
}, nil
}
type zr struct{}
var zeroReader = &zr{}
// Read replaces the contents of dst with zeros.
func (zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
// IsSM2PublicKey check if given public key is a SM2 public key or not
func IsSM2PublicKey(publicKey interface{}) bool {
pub, ok := publicKey.(*ecdsa.PublicKey)
return ok && pub.Curve == sm2ec.P256()
}
// P256 returns sm2 curve signleton, this function is for backward compatibility.
func P256() elliptic.Curve {
return sm2ec.P256()
}
// PublicKeyToECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
// Curve is not supported by ecdh.
func PublicKeyToECDH(k *ecdsa.PublicKey) (*ecdh.PublicKey, error) {
c := curveToECDH(k.Curve)
if c == nil {
return nil, errors.New("sm2: unsupported curve by ecdh")
}
if !k.Curve.IsOnCurve(k.X, k.Y) {
return nil, errors.New("sm2: invalid public key")
}
return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
}
// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
// Curve is not supported by ecdh.
func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
c := curveToECDH(k.Curve)
if c == nil {
return nil, errors.New("sm2: unsupported curve by ecdh")
}
size := (k.Curve.Params().N.BitLen() + 7) / 8
if k.D.BitLen() > size*8 {
return nil, errors.New("sm2: invalid private key")
}
return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
}
func curveToECDH(c elliptic.Curve) ecdh.Curve {
switch c {
case sm2ec.P256():
return ecdh.P256()
default:
return nil
}
}
// randomPoint returns a random scalar and the corresponding point using the
// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling).
func randomPoint(c *sm2Curve, rand io.Reader) (k *bigmod.Nat, p *_sm2ec.SM2P256Point, err error) {
k = bigmod.NewNat()
for {
b := make([]byte, c.N.Size())
if _, err = io.ReadFull(rand, b); err != nil {
return
}
// Mask off any excess bits to increase the chance of hitting a value in
// (0, N). These are the most dangerous lines in the package and maybe in
// the library: a single bit of bias in the selection of nonces would likely
// lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
// Just to be safe, assert that this only happens for the one curve that
// doesn't have a round number of bits.
if excess != 0 {
panic("sm2: internal error: unexpectedly masking off bits")
}
b[0] >>= excess
}
// FIPS 186-4 makes us check k <= N - 2 and then add one.
// Checking 0 < k <= N - 1 is strictly equivalent.
// None of this matters anyway because the chance of selecting
// zero is cryptographically negligible.
if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 {
break
}
if testingOnlyRejectionSamplingLooped != nil {
testingOnlyRejectionSamplingLooped()
}
}
p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N))
return
}
// testingOnlyRejectionSamplingLooped is called when rejection sampling in
// randomPoint rejects a candidate for being higher than the modulus.
var testingOnlyRejectionSamplingLooped func()
type sm2Curve struct {
newPoint func() *_sm2ec.SM2P256Point
curve elliptic.Curve
N *bigmod.Modulus
nMinus2 []byte
}
// pointFromAffine is used to convert the PublicKey to a nistec Point.
func (curve *sm2Curve) pointFromAffine(x, y *big.Int) (p *_sm2ec.SM2P256Point, err error) {
bitSize := curve.curve.Params().BitSize
// Reject values that would not get correctly encoded.
if x.Sign() < 0 || y.Sign() < 0 {
return p, errors.New("negative coordinate")
}
if x.BitLen() > bitSize || y.BitLen() > bitSize {
return p, errors.New("overflowing coordinate")
}
// Encode the coordinates and let SetBytes reject invalid points.
byteLen := (bitSize + 7) / 8
buf := make([]byte, 1+2*byteLen)
buf[0] = 4 // uncompressed point
x.FillBytes(buf[1 : 1+byteLen])
y.FillBytes(buf[1+byteLen : 1+2*byteLen])
return curve.newPoint().SetBytes(buf)
}
// pointToAffine is used to convert a nistec Point to a PublicKey.
func (curve *sm2Curve) pointToAffine(p *_sm2ec.SM2P256Point) (x, y *big.Int, err error) {
out := p.Bytes()
if len(out) == 1 && out[0] == 0 {
// This is the encoding of the point at infinity.
return nil, nil, errors.New("sm2: public key point is the infinity")
}
byteLen := (curve.curve.Params().BitSize + 7) / 8
x = new(big.Int).SetBytes(out[1 : 1+byteLen])
y = new(big.Int).SetBytes(out[1+byteLen:])
return x, y, nil
}
var p256Once sync.Once
var _p256 *sm2Curve
func p256() *sm2Curve {
p256Once.Do(func() {
_p256 = &sm2Curve{
newPoint: func() *_sm2ec.SM2P256Point { return _sm2ec.NewSM2P256Point() },
}
precomputeParams(_p256, P256())
})
return _p256
}
func precomputeParams(c *sm2Curve, curve elliptic.Curve) {
params := curve.Params()
c.curve = curve
c.N, _ = bigmod.NewModulusFromBig(params.N)
c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes()
}