gmsm/sm9/sm9_key.go
2023-06-15 11:23:06 +08:00

606 lines
18 KiB
Go

package sm9
import (
"encoding/pem"
"errors"
"io"
"math/big"
"sync"
"github.com/emmansun/gmsm/internal/bigmod"
"github.com/emmansun/gmsm/sm9/bn256"
"golang.org/x/crypto/cryptobyte"
cryptobyte_asn1 "golang.org/x/crypto/cryptobyte/asn1"
)
// SignMasterPrivateKey master private key for sign, generated by KGC
type SignMasterPrivateKey struct {
*SignMasterPublicKey // master public key
D *big.Int // master private key
}
// SignMasterPublicKey master public key for sign, generated by KGC
type SignMasterPublicKey struct {
MasterPublicKey *bn256.G2 // master public key
pairOnce sync.Once
basePoint *bn256.GT // the result of Pair(Gen1, pub.MasterPublicKey)
tableGenOnce sync.Once
table *[32 * 2]bn256.GTFieldTable // precomputed basePoint^n
}
// SignPrivateKey user private key for sign, generated by KGC
type SignPrivateKey struct {
PrivateKey *bn256.G1 // user private key
*SignMasterPublicKey // master public key
}
// EncryptMasterPrivateKey master private key for encryption, generated by KGC
type EncryptMasterPrivateKey struct {
*EncryptMasterPublicKey // master public key
D *big.Int // master private key
}
// EncryptMasterPublicKey master private key for encryption, generated by KGC
type EncryptMasterPublicKey struct {
MasterPublicKey *bn256.G1 // public key
pairOnce sync.Once
basePoint *bn256.GT // the result of Pair(pub.MasterPublicKey, Gen2)
tableGenOnce sync.Once
table *[32 * 2]bn256.GTFieldTable // precomputed basePoint^n
}
// EncryptPrivateKey user private key for encryption, generated by KGC
type EncryptPrivateKey struct {
PrivateKey *bn256.G2 // user private key
*EncryptMasterPublicKey // master public key
}
// GenerateSignMasterKey generates a master public and private key pair for DSA usage.
func GenerateSignMasterKey(rand io.Reader) (*SignMasterPrivateKey, error) {
k, err := randomScalar(rand)
if err != nil {
return nil, err
}
kBytes := k.Bytes(orderNat)
p, err := new(bn256.G2).ScalarBaseMult(kBytes)
if err != nil {
return nil, err
}
priv := new(SignMasterPrivateKey)
priv.D = new(big.Int).SetBytes(kBytes)
priv.SignMasterPublicKey = new(SignMasterPublicKey)
priv.MasterPublicKey = p
return priv, nil
}
// MarshalASN1 marshal sign master private key to asn.1 format data according
// SM9 cryptographic algorithm application specification
func (master *SignMasterPrivateKey) MarshalASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BigInt(master.D)
return b.Bytes()
}
// UnmarshalASN1 unmarsal der data to sign master private key
func (master *SignMasterPrivateKey) UnmarshalASN1(der []byte) error {
input := cryptobyte.String(der)
d := &big.Int{}
var inner cryptobyte.String
var pubBytes []byte
if der[0] == 0x30 {
if !input.ReadASN1(&inner, cryptobyte_asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(d) {
return errors.New("sm9: invalid sign master private key asn1 data")
}
// Just parse it, did't validate it
if !inner.Empty() && (!inner.ReadASN1BitStringAsBytes(&pubBytes) || !inner.Empty()) {
return errors.New("sm9: invalid sign master public key asn1 data")
}
} else if !input.ReadASN1Integer(d) || !input.Empty() {
return errors.New("sm9: invalid sign master private key asn1 data")
}
master.D = d
master.SignMasterPublicKey = new(SignMasterPublicKey)
p, err := new(bn256.G2).ScalarBaseMult(bn256.NormalizeScalar(d.Bytes()))
if err != nil {
return err
}
master.MasterPublicKey = p
return nil
}
// GenerateUserKey generate an user dsa key.
func (master *SignMasterPrivateKey) GenerateUserKey(uid []byte, hid byte) (*SignPrivateKey, error) {
var id []byte
id = append(id, uid...)
id = append(id, hid)
t1Nat := hashH1(id)
d, err := bigmod.NewNat().SetBytes(master.D.Bytes(), orderNat)
if err != nil {
return nil, err
}
t1Nat.Add(d, orderNat)
if t1Nat.IsZero() == 1 {
return nil, errors.New("sm9: need to re-generate sign master private key")
}
t1Nat = bigmod.NewNat().Exp(t1Nat, orderMinus2, orderNat)
t1Nat.Mul(d, orderNat)
priv := new(SignPrivateKey)
priv.SignMasterPublicKey = master.SignMasterPublicKey
g1, err := new(bn256.G1).ScalarBaseMult(t1Nat.Bytes(orderNat))
if err != nil {
return nil, err
}
priv.PrivateKey = g1
return priv, nil
}
// Public returns the public key corresponding to priv.
func (master *SignMasterPrivateKey) Public() *SignMasterPublicKey {
return master.SignMasterPublicKey
}
// pair generate the basepoint once
func (pub *SignMasterPublicKey) pair() *bn256.GT {
pub.pairOnce.Do(func() {
pub.basePoint = bn256.Pair(bn256.Gen1, pub.MasterPublicKey)
})
return pub.basePoint
}
func (pub *SignMasterPublicKey) generatorTable() *[32 * 2]bn256.GTFieldTable {
pub.tableGenOnce.Do(func() {
pub.table = bn256.GenerateGTFieldTable(pub.pair())
})
return pub.table
}
// ScalarBaseMult compute basepoint^r with precomputed table
// The base point = pair(Gen1, <master public key>)
func (pub *SignMasterPublicKey) ScalarBaseMult(scalar []byte) (*bn256.GT, error) {
tables := pub.generatorTable()
return bn256.ScalarBaseMultGT(tables, scalar)
}
// GenerateUserPublicKey generate user sign public key
func (pub *SignMasterPublicKey) GenerateUserPublicKey(uid []byte, hid byte) *bn256.G2 {
var buffer []byte
buffer = append(buffer, uid...)
buffer = append(buffer, hid)
h1 := hashH1(buffer)
p, err := new(bn256.G2).ScalarBaseMult(h1.Bytes(orderNat))
if err != nil {
panic(err)
}
p.Add(p, pub.MasterPublicKey)
return p
}
// MarshalASN1 marshal sign master public key to asn.1 format data according
// SM9 cryptographic algorithm application specification
func (pub *SignMasterPublicKey) MarshalASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(pub.MasterPublicKey.MarshalUncompressed())
return b.Bytes()
}
// MarshalCompressedASN1 marshal sign master public key to asn.1 format data according
// SM9 cryptographic algorithm application specification, the curve point is in compressed form.
func (pub *SignMasterPublicKey) MarshalCompressedASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(pub.MasterPublicKey.MarshalCompressed())
return b.Bytes()
}
func unmarshalG2(bytes []byte) (*bn256.G2, error) {
g2 := new(bn256.G2)
switch bytes[0] {
case 4:
_, err := g2.Unmarshal(bytes[1:])
if err != nil {
return nil, err
}
case 2, 3:
_, err := g2.UnmarshalCompressed(bytes)
if err != nil {
return nil, err
}
default:
return nil, errors.New("sm9: invalid point identity byte")
}
return g2, nil
}
// UnmarshalRaw unmarsal raw bytes data to sign master public key
func (pub *SignMasterPublicKey) UnmarshalRaw(bytes []byte) error {
g2, err := unmarshalG2(bytes)
if err != nil {
return err
}
pub.MasterPublicKey = g2
return nil
}
// UnmarshalASN1 unmarsal der data to sign master public key
func (pub *SignMasterPublicKey) UnmarshalASN1(der []byte) error {
var bytes []byte
var inner cryptobyte.String
input := cryptobyte.String(der)
if der[0] == 0x30 {
if !input.ReadASN1(&inner, cryptobyte_asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1BitStringAsBytes(&bytes) ||
!inner.Empty() {
return errors.New("sm9: invalid sign master public key asn1 data")
}
} else if !input.ReadASN1BitStringAsBytes(&bytes) || !input.Empty() {
return errors.New("sm9: invalid sign master public key asn1 data")
}
return pub.UnmarshalRaw(bytes)
}
// ParseFromPEM just for GMSSL, there are no Algorithm pkix.AlgorithmIdentifier
func (pub *SignMasterPublicKey) ParseFromPEM(data []byte) error {
block, _ := pem.Decode([]byte(data))
if block == nil {
return errors.New("sm9: failed to parse PEM block")
}
return pub.UnmarshalASN1(block.Bytes)
}
// MasterPublic returns the master public key corresponding to priv.
func (priv *SignPrivateKey) MasterPublic() *SignMasterPublicKey {
return priv.SignMasterPublicKey
}
// SetMasterPublicKey bind the sign master public key to it.
func (priv *SignPrivateKey) SetMasterPublicKey(pub *SignMasterPublicKey) {
if priv.SignMasterPublicKey == nil || priv.SignMasterPublicKey.MasterPublicKey == nil {
priv.SignMasterPublicKey = pub
}
}
// MarshalASN1 marshal sign user private key to asn.1 format data according
// SM9 cryptographic algorithm application specification
func (priv *SignPrivateKey) MarshalASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(priv.PrivateKey.MarshalUncompressed())
return b.Bytes()
}
// MarshalCompressedASN1 marshal sign user private key to asn.1 format data according
// SM9 cryptographic algorithm application specification, the curve point is in compressed form.
func (priv *SignPrivateKey) MarshalCompressedASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(priv.PrivateKey.MarshalCompressed())
return b.Bytes()
}
func unmarshalG1(bytes []byte) (*bn256.G1, error) {
g := new(bn256.G1)
switch bytes[0] {
case 4:
_, err := g.Unmarshal(bytes[1:])
if err != nil {
return nil, err
}
case 2, 3:
_, err := g.UnmarshalCompressed(bytes)
if err != nil {
return nil, err
}
default:
return nil, errors.New("sm9: invalid point identity byte")
}
return g, nil
}
// UnmarshalRaw unmarsal raw bytes data to sign user private key
// Note, priv's SignMasterPublicKey should be handled separately.
func (priv *SignPrivateKey) UnmarshalRaw(bytes []byte) error {
g, err := unmarshalG1(bytes)
if err != nil {
return err
}
priv.PrivateKey = g
return nil
}
// UnmarshalASN1 unmarsal der data to sign user private key
// Note, priv's SignMasterPublicKey should be handled separately.
func (priv *SignPrivateKey) UnmarshalASN1(der []byte) error {
var bytes []byte
var pubBytes []byte
var inner cryptobyte.String
input := cryptobyte.String(der)
if der[0] == 0x30 {
if !input.ReadASN1(&inner, cryptobyte_asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1BitStringAsBytes(&bytes) {
return errors.New("sm9: invalid sign user private key asn1 data")
}
if !inner.Empty() && (!inner.ReadASN1BitStringAsBytes(&pubBytes) || !inner.Empty()) {
return errors.New("sm9: invalid sign master public key asn1 data")
}
} else if !input.ReadASN1BitStringAsBytes(&bytes) || !input.Empty() {
return errors.New("sm9: invalid sign user private key asn1 data")
}
err := priv.UnmarshalRaw(bytes)
if err != nil {
return err
}
if len(pubBytes) > 0 {
masterPK := new(SignMasterPublicKey)
err = masterPK.UnmarshalRaw(pubBytes)
if err != nil {
return err
}
priv.SetMasterPublicKey(masterPK)
}
return nil
}
// GenerateEncryptMasterKey generates a master public and private key pair for encryption usage.
func GenerateEncryptMasterKey(rand io.Reader) (*EncryptMasterPrivateKey, error) {
k, err := randomScalar(rand)
if err != nil {
return nil, err
}
kBytes := k.Bytes(orderNat)
priv := new(EncryptMasterPrivateKey)
priv.D = new(big.Int).SetBytes(kBytes)
priv.EncryptMasterPublicKey = new(EncryptMasterPublicKey)
p, err := new(bn256.G1).ScalarBaseMult(kBytes)
if err != nil {
panic(err)
}
priv.MasterPublicKey = p
return priv, nil
}
// GenerateUserKey generate an user key for encryption.
func (master *EncryptMasterPrivateKey) GenerateUserKey(uid []byte, hid byte) (*EncryptPrivateKey, error) {
var id []byte
id = append(id, uid...)
id = append(id, hid)
t1Nat := hashH1(id)
d, err := bigmod.NewNat().SetBytes(master.D.Bytes(), orderNat)
if err != nil {
return nil, err
}
t1Nat.Add(d, orderNat)
if t1Nat.IsZero() == 1 {
return nil, errors.New("sm9: need to re-generate encrypt master private key")
}
t1Nat = bigmod.NewNat().Exp(t1Nat, orderMinus2, orderNat)
t1Nat.Mul(d, orderNat)
priv := new(EncryptPrivateKey)
priv.EncryptMasterPublicKey = master.EncryptMasterPublicKey
p, err := new(bn256.G2).ScalarBaseMult(t1Nat.Bytes(orderNat))
if err != nil {
panic(err)
}
priv.PrivateKey = p
return priv, nil
}
// Public returns the public key corresponding to priv.
func (master *EncryptMasterPrivateKey) Public() *EncryptMasterPublicKey {
return master.EncryptMasterPublicKey
}
// MarshalASN1 marshal encrypt master private key to asn.1 format data according
// SM9 cryptographic algorithm application specification
func (master *EncryptMasterPrivateKey) MarshalASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BigInt(master.D)
return b.Bytes()
}
// UnmarshalASN1 unmarsal der data to encrypt master private key
func (master *EncryptMasterPrivateKey) UnmarshalASN1(der []byte) error {
input := cryptobyte.String(der)
d := &big.Int{}
var inner cryptobyte.String
var pubBytes []byte
if der[0] == 0x30 {
if !input.ReadASN1(&inner, cryptobyte_asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(d) {
return errors.New("sm9: invalid encrypt master private key asn1 data")
}
// Just parse it, did't validate it
if !inner.Empty() && (!inner.ReadASN1BitStringAsBytes(&pubBytes) || !inner.Empty()) {
return errors.New("sm9: invalid encrypt master public key asn1 data")
}
} else if !input.ReadASN1Integer(d) || !input.Empty() {
return errors.New("sm9: invalid encrypt master private key asn1 data")
}
master.D = d
master.EncryptMasterPublicKey = new(EncryptMasterPublicKey)
p, err := new(bn256.G1).ScalarBaseMult(bn256.NormalizeScalar(d.Bytes()))
if err != nil {
return err
}
master.MasterPublicKey = p
return nil
}
// pair generate the basepoint once
func (pub *EncryptMasterPublicKey) pair() *bn256.GT {
pub.pairOnce.Do(func() {
pub.basePoint = bn256.Pair(pub.MasterPublicKey, bn256.Gen2)
})
return pub.basePoint
}
func (pub *EncryptMasterPublicKey) generatorTable() *[32 * 2]bn256.GTFieldTable {
pub.tableGenOnce.Do(func() {
pub.table = bn256.GenerateGTFieldTable(pub.pair())
})
return pub.table
}
// ScalarBaseMult compute basepoint^r with precomputed table.
// The base point = pair(<master public key>, Gen2)
func (pub *EncryptMasterPublicKey) ScalarBaseMult(scalar []byte) (*bn256.GT, error) {
tables := pub.generatorTable()
return bn256.ScalarBaseMultGT(tables, scalar)
}
// GenerateUserPublicKey generate user encrypt public key
func (pub *EncryptMasterPublicKey) GenerateUserPublicKey(uid []byte, hid byte) *bn256.G1 {
var buffer []byte
buffer = append(buffer, uid...)
buffer = append(buffer, hid)
h1 := hashH1(buffer)
p, err := new(bn256.G1).ScalarBaseMult(h1.Bytes(orderNat))
if err != nil {
panic(err)
}
p.Add(p, pub.MasterPublicKey)
return p
}
// MarshalASN1 marshal encrypt master public key to asn.1 format data according
// SM9 cryptographic algorithm application specification
func (pub *EncryptMasterPublicKey) MarshalASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(pub.MasterPublicKey.MarshalUncompressed())
return b.Bytes()
}
// MarshalCompressedASN1 marshal encrypt master public key to asn.1 format data according
// SM9 cryptographic algorithm application specification, the curve point is in compressed form.
func (pub *EncryptMasterPublicKey) MarshalCompressedASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(pub.MasterPublicKey.MarshalCompressed())
return b.Bytes()
}
// UnmarshalRaw unmarsal raw bytes data to encrypt master public key
func (pub *EncryptMasterPublicKey) UnmarshalRaw(bytes []byte) error {
g, err := unmarshalG1(bytes)
if err != nil {
return err
}
pub.MasterPublicKey = g
return nil
}
// ParseFromPEM just for GMSSL, there are no Algorithm pkix.AlgorithmIdentifier
func (pub *EncryptMasterPublicKey) ParseFromPEM(data []byte) error {
block, _ := pem.Decode([]byte(data))
if block == nil {
return errors.New("sm9: failed to parse PEM block")
}
return pub.UnmarshalASN1(block.Bytes)
}
// UnmarshalASN1 unmarsal der data to encrypt master public key
func (pub *EncryptMasterPublicKey) UnmarshalASN1(der []byte) error {
var bytes []byte
var inner cryptobyte.String
input := cryptobyte.String(der)
if der[0] == 0x30 {
if !input.ReadASN1(&inner, cryptobyte_asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1BitStringAsBytes(&bytes) ||
!inner.Empty() {
return errors.New("sm9: invalid encrypt master public key asn1 data")
}
} else if !input.ReadASN1BitStringAsBytes(&bytes) || !input.Empty() {
return errors.New("sm9: invalid encrypt master public key asn1 data")
}
return pub.UnmarshalRaw(bytes)
}
// MasterPublic returns the master public key corresponding to priv.
func (priv *EncryptPrivateKey) MasterPublic() *EncryptMasterPublicKey {
return priv.EncryptMasterPublicKey
}
// SetMasterPublicKey bind the encrypt master public key to it.
func (priv *EncryptPrivateKey) SetMasterPublicKey(pub *EncryptMasterPublicKey) {
if priv.EncryptMasterPublicKey == nil || priv.EncryptMasterPublicKey.MasterPublicKey == nil {
priv.EncryptMasterPublicKey = pub
}
}
// MarshalASN1 marshal encrypt user private key to asn.1 format data according
// SM9 cryptographic algorithm application specification
func (priv *EncryptPrivateKey) MarshalASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(priv.PrivateKey.MarshalUncompressed())
return b.Bytes()
}
// MarshalCompressedASN1 marshal encrypt user private key to asn.1 format data according
// SM9 cryptographic algorithm application specification, the curve point is in compressed form.
func (priv *EncryptPrivateKey) MarshalCompressedASN1() ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1BitString(priv.PrivateKey.MarshalCompressed())
return b.Bytes()
}
// UnmarshalRaw unmarsal raw bytes data to encrypt user private key
// Note, priv's EncryptMasterPublicKey should be handled separately.
func (priv *EncryptPrivateKey) UnmarshalRaw(bytes []byte) error {
g, err := unmarshalG2(bytes)
if err != nil {
return err
}
priv.PrivateKey = g
return nil
}
// UnmarshalASN1 unmarsal der data to encrypt user private key
// Note, priv's EncryptMasterPublicKey should be handled separately.
func (priv *EncryptPrivateKey) UnmarshalASN1(der []byte) error {
var bytes []byte
var pubBytes []byte
var inner cryptobyte.String
input := cryptobyte.String(der)
if der[0] == 0x30 {
if !input.ReadASN1(&inner, cryptobyte_asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1BitStringAsBytes(&bytes) {
return errors.New("sm9: invalid encrypt user private key asn1 data")
}
if !inner.Empty() && (!inner.ReadASN1BitStringAsBytes(&pubBytes) || !inner.Empty()) {
return errors.New("sm9: invalid encrypt master public key asn1 data")
}
} else if !input.ReadASN1BitStringAsBytes(&bytes) || !input.Empty() {
return errors.New("sm9: invalid encrypt user private key asn1 data")
}
err := priv.UnmarshalRaw(bytes)
if err != nil {
return err
}
if len(pubBytes) > 0 {
masterPK := new(EncryptMasterPublicKey)
err = masterPK.UnmarshalRaw(pubBytes)
if err != nil {
return err
}
priv.SetMasterPublicKey(masterPK)
}
return nil
}