gmsm/sm9/bn256/bn_pair.go

260 lines
7.7 KiB
Go

// Package bn256 defines/implements ShangMi(SM) sm9's curves and pairing.
package bn256
func lineFunctionAdd(r, p, rOut *twistPoint, q *curvePoint, r2, a, b, c *gfP2) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := (&gfP2{}).MulNC(&p.x, &r.t) // B = Xp * Zr^2
D := (&gfP2{}).Add(&p.y, &r.z) // D = Yp + Zr
D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t) // D = ((Yp + Zr)^2 - Zr^2 - Yp^2)*Zr^2 = 2Yp*Zr^3
H := (&gfP2{}).Sub(B, &r.x) // H = Xp * Zr^2 - Xr
I := (&gfP2{}).SquareNC(H) // I = (Xp * Zr^2 - Xr)^2 = Xp^2*Zr^4 + Xr^2 - 2Xr*Xp*Zr^2
E := (&gfP2{}).Double(I) // E = 2*(Xp * Zr^2 - Xr)^2
E.Double(E) // E = 4*(Xp * Zr^2 - Xr)^2
J := (&gfP2{}).MulNC(H, E) // J = 4*(Xp * Zr^2 - Xr)^3
L1 := (&gfP2{}).Sub(D, &r.y) // L1 = 2Yp*Zr^3 - Yr
L1.Sub(L1, &r.y) // L1 = 2Yp*Zr^3 - 2*Yr
V := (&gfP2{}).MulNC(&r.x, E) // V = 4 * Xr * (Xp * Zr^2 - Xr)^2
rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V) // rOut.x = L1^2 - J - 2V
rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I) // rOut.z = (Zr + H)^2 - Zr^2 - I
t := (&gfP2{}).Sub(V, &rOut.x) // t = V - rOut.x
t.Mul(t, L1) // t = L1*(V-rOut.x)
t2 := (&gfP2{}).MulNC(&r.y, J)
t2.Double(t2) // t2 = 2Yr * J
rOut.y.Sub(t, t2) // rOut.y = L1*(V-rOut.x) - 2Yr*J
rOut.t.SquareNC(&rOut.z)
// t = (Yp + rOut.Z)^2 - Yp^2 - rOut.Z^2 = 2Yp*rOut.Z
t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t)
t2.Mul(L1, &p.x)
t2.Double(t2) // t2 = 2 L1 * Xp
a.Sub(t2, t) // a = 2 L1 * Xp - 2 Yp * rOut.z = 2 L1 * Xp - (Yp + rOut.Z)^2 + Yp^2 + rOut.Z^2
c.MulScalar(&rOut.z, &q.y) // c = rOut.z * Yq
c.Double(c) // c = 2 * rOut.z * Yq
b.Neg(L1) // b= -L1
b.MulScalar(b, &q.x).Double(b) // b = -2 * L1 * Xq
}
func lineFunctionDouble(r, rOut *twistPoint, q *curvePoint, a, b, c *gfP2) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := (&gfP2{}).SquareNC(&r.x)
B := (&gfP2{}).SquareNC(&r.y)
C := (&gfP2{}).SquareNC(B) // C = Yr ^ 4
D := (&gfP2{}).Add(&r.x, B)
D.Square(D).Sub(D, A).Sub(D, C).Double(D)
E := (&gfP2{}).Double(A) //
E.Add(E, A) // E = 3 * Xr ^ 2
G := (&gfP2{}).SquareNC(E) // G = 9 * Xr^4
rOut.x.Sub(G, D).Sub(&rOut.x, D)
rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t) // Z3 = (Yr + Zr)^2 - Yr^2 - Zr^2 = 2Yr*Zr
rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E)
t := (&gfP2{}).Double(C) // t = 2 * r.y ^ 4
t.Double(t).Double(t) // t = 8 * Yr ^ 4
rOut.y.Sub(&rOut.y, t)
rOut.t.SquareNC(&rOut.z)
t.Mul(E, &r.t).Double(t) // t = 2(E * Tr)
b.Neg(t) // b = -2(E * Tr)
b.MulScalar(b, &q.x) // b = -2(E * Tr * Xq)
a.Add(&r.x, E) // a = Xr + E
a.Square(a).Sub(a, A).Sub(a, G) // a = (Xr + E) ^ 2 - A - G
t.Double(B).Double(t) // t = 4B
a.Sub(a, t) // a = (Xr + E) ^ 2 - A - G - 4B
c.Mul(&rOut.z, &r.t) // c = rOut.z * Tr
c.Double(c).MulScalar(c, &q.y) // c = 2 rOut.z * Tr * Yq
}
// (ret.z + ret.y*w + ret.x*w^2)* ((cv+a) + b*w^2)
func mulLine(ret *gfP12, a, b, c *gfP2) {
tz, t := &gfP4{}, &gfP4{}
tz.MulNC2(&ret.z, c, a)
t.MulScalar(&ret.y, b).MulV1(t)
tz.Add(tz, t)
t.MulNC2(&ret.y, c, a)
ret.y.MulScalar(&ret.x, b).MulV1(&ret.y)
ret.y.Add(&ret.y, t)
t.MulNC2(&ret.x, c, a)
ret.x.MulScalar(&ret.z, b)
ret.x.Add(&ret.x, t)
gfp4Copy(&ret.z, tz)
}
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that Q is a point on the sextic twist of the curve over Fp^2, P(x,y) is a point on the
// curve over the base field Fp
func miller(q *twistPoint, p *curvePoint) *gfP12 {
ret := (&gfP12{}).SetOne()
aAffine := &twistPoint{}
aAffine.Set(q)
aAffine.MakeAffine()
minusA := &twistPoint{}
minusA.Neg(aAffine)
bAffine := &curvePoint{}
bAffine.Set(p)
bAffine.MakeAffine()
r := &twistPoint{}
r.Set(aAffine)
r2 := (&gfP2{}).SquareNC(&aAffine.y)
a, b, c := &gfP2{}, &gfP2{}, &gfP2{}
newR := &twistPoint{}
var tmpR *twistPoint
for i := len(sixUPlus2NAF) - 1; i > 0; i-- {
lineFunctionDouble(r, newR, bAffine, a, b, c)
if i != len(sixUPlus2NAF)-1 {
ret.Square(ret)
}
mulLine(ret, a, b, c)
tmpR = r
r = newR
newR = tmpR
switch sixUPlus2NAF[i-1] {
case 1:
lineFunctionAdd(r, aAffine, newR, bAffine, r2, a, b, c)
case -1:
lineFunctionAdd(r, minusA, newR, bAffine, r2, a, b, c)
default:
continue
}
mulLine(ret, a, b, c)
tmpR = r
r = newR
newR = tmpR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (x*β^(-1/3), y*β^(-1/2)). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄*β^(-p/3)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of β^(-1/3) so we
// rewrite this as x̄*β^((-p+1)/3)*β^(-1/3).
//
// A similar argument can be made for the y value.
q1 := &twistPoint{}
q1.x.Conjugate(&aAffine.x)
q1.x.MulScalar(&q1.x, betaToNegPPlus1Over3)
q1.y.Conjugate(&aAffine.y)
q1.y.MulScalar(&q1.y, betaToNegPPlus1Over2)
q1.z.SetOne()
q1.t.SetOne()
minusQ2 := &twistPoint{}
minusQ2.x.Set(&aAffine.x)
minusQ2.x.MulScalar(&minusQ2.x, betaToNegP2Plus1Over3)
minusQ2.y.Neg(&aAffine.y)
minusQ2.y.MulScalar(&minusQ2.y, betaToNegP2Plus1Over2)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(&q1.y)
lineFunctionAdd(r, q1, newR, bAffine, r2, a, b, c)
mulLine(ret, a, b, c)
tmpR = r
r = newR
newR = tmpR
r2.Square(&minusQ2.y)
lineFunctionAdd(r, minusQ2, newR, bAffine, r2, a, b, c)
mulLine(ret, a, b, c)
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT. https://eprint.iacr.org/2007/390.pdf
// http://cryptojedi.org/papers/dclxvi-20100714.pdf
func finalExponentiation(in *gfP12) *gfP12 {
// This is the p^6-Frobenius
t1 := (&gfP12{}).FrobeniusP6(in)
inv := (&gfP12{}).Invert(in)
t1.Mul(t1, inv)
t2 := inv.FrobeniusP2(t1) // reuse inv
t1.Mul(t1, t2) // t1 = in ^ ((p^6 - 1) * (p^2 + 1)), the first two parts of the exponentiation
fp := (&gfP12{}).Frobenius(t1)
fp2 := (&gfP12{}).FrobeniusP2(t1)
fp3 := (&gfP12{}).Frobenius(fp2)
y0 := &gfP12{}
y0.MulNC(fp, fp2).Mul(y0, fp3) // y0 = (t1^p) * (t1^(p^2)) * (t1^(p^3))
// reuse fp, fp2, fp3 local variables
fu := fp.Cyclo6PowToU(t1)
fu2 := fp2.Cyclo6PowToU(fu)
fu3 := fp3.Cyclo6PowToU(fu2)
fu2p := (&gfP12{}).Frobenius(fu2)
fu3p := (&gfP12{}).Frobenius(fu3)
y1 := (&gfP12{}).Conjugate(t1) // y1 = 1 / t1
y2 := (&gfP12{}).FrobeniusP2(fu2) // y2 = (t1^(u^2))^(p^2)
y3 := (&gfP12{}).Frobenius(fu) // y3 = (t1^u)^p
y3.Conjugate(y3) // y3 = 1 / (t1^u)^p
y4 := (&gfP12{}).MulNC(fu, fu2p) // y4 = (t1^u) * ((t1^(u^2))^p)
y4.Conjugate(y4) // y4 = 1 / ((t1^u) * ((t1^(u^2))^p))
y5 := fu2p.Conjugate(fu2) // y5 = 1 / t1^(u^2), reuse fu2p
y6 := (&gfP12{}).MulNC(fu3, fu3p) // y6 = t1^(u^3) * (t1^(u^3))^p
y6.Conjugate(y6) // y6 = 1 / (t1^(u^3) * (t1^(u^3))^p)
// https://eprint.iacr.org/2008/490.pdf
t0 := (&gfP12{}).Cyclo6SquareNC(y6)
t0.Mul(t0, y4).Mul(t0, y5)
t1.Mul(y3, y5).Mul(t1, t0)
t0.Mul(t0, y2)
t1.Cyclo6Square(t1).Mul(t1, t0).Cyclo6Square(t1)
t0.Mul(t1, y1)
t1.Mul(t1, y0)
t0.Cyclo6Square(t0).Mul(t0, t1)
return t0
}
func pairing(a *twistPoint, b *curvePoint) *gfP12 {
e := miller(a, b)
ret := finalExponentiation(e)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}