mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-25 11:46:19 +08:00
222 lines
4.7 KiB
Go
222 lines
4.7 KiB
Go
// Code generated by addchain. DO NOT EDIT.
|
||
package bn256
|
||
|
||
// Invert sets e = 1/x, and returns e.
|
||
//
|
||
// If x == 0, Invert returns e = 0.
|
||
func (e *gfP) Invert(x *gfP) *gfP {
|
||
// Inversion is implemented as exponentiation with exponent p − 2.
|
||
// The sequence of 56 multiplications and 250 squarings is derived from the
|
||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||
//
|
||
// _10 = 2*1
|
||
// _100 = 2*_10
|
||
// _110 = _10 + _100
|
||
// _1010 = _100 + _110
|
||
// _1011 = 1 + _1010
|
||
// _1101 = _10 + _1011
|
||
// _10000 = _110 + _1010
|
||
// _10101 = _1010 + _1011
|
||
// _11011 = _110 + _10101
|
||
// _11101 = _10 + _11011
|
||
// _11111 = _10 + _11101
|
||
// _101001 = _1010 + _11111
|
||
// _101011 = _10 + _101001
|
||
// _111011 = _10000 + _101011
|
||
// _1000101 = _1010 + _111011
|
||
// _1001111 = _1010 + _1000101
|
||
// _1010001 = _10 + _1001111
|
||
// _1011011 = _1010 + _1010001
|
||
// _1011101 = _10 + _1011011
|
||
// _1011111 = _10 + _1011101
|
||
// _1100011 = _100 + _1011111
|
||
// _1101001 = _110 + _1100011
|
||
// _1101101 = _100 + _1101001
|
||
// _1101111 = _10 + _1101101
|
||
// _1110101 = _110 + _1101111
|
||
// _1111011 = _110 + _1110101
|
||
// _10110110 = _111011 + _1111011
|
||
// i72 = ((_10110110 << 2 + 1) << 33 + _10101) << 8
|
||
// i94 = ((_11101 + i72) << 9 + _1101111) << 10 + _1110101
|
||
// i116 = ((2*i94 + 1) << 14 + _1110101) << 5
|
||
// i129 = 2*((_1101 + i116) << 9 + _1111011 + _100)
|
||
// i146 = ((1 + i129) << 5 + _1011) << 9 + _111011
|
||
// i174 = ((i146 << 8 + _11101) << 9 + _101001) << 9
|
||
// i194 = ((_11111 + i174) << 8 + _101001) << 9 + _1101001
|
||
// i220 = ((i194 << 8 + _1100011) << 8 + _1001111) << 8
|
||
// i237 = ((_1011101 + i220) << 7 + _1101101) << 7 + _1011111
|
||
// i260 = ((i237 << 8 + _101011) << 6 + _11111) << 7
|
||
// i279 = ((_11011 + i260) << 9 + _1001111) << 7 + _1100011
|
||
// i305 = ((i279 << 8 + _1010001) << 8 + _1000101) << 8
|
||
// return _1111011 + i305
|
||
//
|
||
var z = new(gfP).Set(e)
|
||
var t0 = new(gfP)
|
||
var t1 = new(gfP)
|
||
var t2 = new(gfP)
|
||
var t3 = new(gfP)
|
||
var t4 = new(gfP)
|
||
var t5 = new(gfP)
|
||
var t6 = new(gfP)
|
||
var t7 = new(gfP)
|
||
var t8 = new(gfP)
|
||
var t9 = new(gfP)
|
||
var t10 = new(gfP)
|
||
var t11 = new(gfP)
|
||
var t12 = new(gfP)
|
||
var t13 = new(gfP)
|
||
var t14 = new(gfP)
|
||
var t15 = new(gfP)
|
||
var t16 = new(gfP)
|
||
var t17 = new(gfP)
|
||
var t18 = new(gfP)
|
||
var t19 = new(gfP)
|
||
var t20 = new(gfP)
|
||
|
||
t17.Square(x)
|
||
t15.Square(t17)
|
||
z.Mul(t17, t15)
|
||
t2.Mul(t15, z)
|
||
t14.Mul(x, t2)
|
||
t16.Mul(t17, t14)
|
||
t0.Mul(z, t2)
|
||
t19.Mul(t2, t14)
|
||
t4.Mul(z, t19)
|
||
t12.Mul(t17, t4)
|
||
t5.Mul(t17, t12)
|
||
t11.Mul(t2, t5)
|
||
t6.Mul(t17, t11)
|
||
t13.Mul(t0, t6)
|
||
t0.Mul(t2, t13)
|
||
t3.Mul(t2, t0)
|
||
t1.Mul(t17, t3)
|
||
t2.Mul(t2, t1)
|
||
t9.Mul(t17, t2)
|
||
t7.Mul(t17, t9)
|
||
t2.Mul(t15, t7)
|
||
t10.Mul(z, t2)
|
||
t8.Mul(t15, t10)
|
||
t18.Mul(t17, t8)
|
||
t17.Mul(z, t18)
|
||
z.Mul(z, t17)
|
||
t20.Mul(t13, z)
|
||
for s := 0; s < 2; s++ {
|
||
t20.Square(t20)
|
||
}
|
||
t20.Mul(x, t20)
|
||
for s := 0; s < 33; s++ {
|
||
t20.Square(t20)
|
||
}
|
||
t19.Mul(t19, t20)
|
||
for s := 0; s < 8; s++ {
|
||
t19.Square(t19)
|
||
}
|
||
t19.Mul(t12, t19)
|
||
for s := 0; s < 9; s++ {
|
||
t19.Square(t19)
|
||
}
|
||
t18.Mul(t18, t19)
|
||
for s := 0; s < 10; s++ {
|
||
t18.Square(t18)
|
||
}
|
||
t18.Mul(t17, t18)
|
||
t18.Square(t18)
|
||
t18.Mul(x, t18)
|
||
for s := 0; s < 14; s++ {
|
||
t18.Square(t18)
|
||
}
|
||
t17.Mul(t17, t18)
|
||
for s := 0; s < 5; s++ {
|
||
t17.Square(t17)
|
||
}
|
||
t16.Mul(t16, t17)
|
||
for s := 0; s < 9; s++ {
|
||
t16.Square(t16)
|
||
}
|
||
t16.Mul(z, t16)
|
||
t15.Mul(t15, t16)
|
||
t15.Square(t15)
|
||
t15.Mul(x, t15)
|
||
for s := 0; s < 5; s++ {
|
||
t15.Square(t15)
|
||
}
|
||
t14.Mul(t14, t15)
|
||
for s := 0; s < 9; s++ {
|
||
t14.Square(t14)
|
||
}
|
||
t13.Mul(t13, t14)
|
||
for s := 0; s < 8; s++ {
|
||
t13.Square(t13)
|
||
}
|
||
t12.Mul(t12, t13)
|
||
for s := 0; s < 9; s++ {
|
||
t12.Square(t12)
|
||
}
|
||
t12.Mul(t11, t12)
|
||
for s := 0; s < 9; s++ {
|
||
t12.Square(t12)
|
||
}
|
||
t12.Mul(t5, t12)
|
||
for s := 0; s < 8; s++ {
|
||
t12.Square(t12)
|
||
}
|
||
t11.Mul(t11, t12)
|
||
for s := 0; s < 9; s++ {
|
||
t11.Square(t11)
|
||
}
|
||
t10.Mul(t10, t11)
|
||
for s := 0; s < 8; s++ {
|
||
t10.Square(t10)
|
||
}
|
||
t10.Mul(t2, t10)
|
||
for s := 0; s < 8; s++ {
|
||
t10.Square(t10)
|
||
}
|
||
t10.Mul(t3, t10)
|
||
for s := 0; s < 8; s++ {
|
||
t10.Square(t10)
|
||
}
|
||
t9.Mul(t9, t10)
|
||
for s := 0; s < 7; s++ {
|
||
t9.Square(t9)
|
||
}
|
||
t8.Mul(t8, t9)
|
||
for s := 0; s < 7; s++ {
|
||
t8.Square(t8)
|
||
}
|
||
t7.Mul(t7, t8)
|
||
for s := 0; s < 8; s++ {
|
||
t7.Square(t7)
|
||
}
|
||
t6.Mul(t6, t7)
|
||
for s := 0; s < 6; s++ {
|
||
t6.Square(t6)
|
||
}
|
||
t5.Mul(t5, t6)
|
||
for s := 0; s < 7; s++ {
|
||
t5.Square(t5)
|
||
}
|
||
t4.Mul(t4, t5)
|
||
for s := 0; s < 9; s++ {
|
||
t4.Square(t4)
|
||
}
|
||
t3.Mul(t3, t4)
|
||
for s := 0; s < 7; s++ {
|
||
t3.Square(t3)
|
||
}
|
||
t2.Mul(t2, t3)
|
||
for s := 0; s < 8; s++ {
|
||
t2.Square(t2)
|
||
}
|
||
t1.Mul(t1, t2)
|
||
for s := 0; s < 8; s++ {
|
||
t1.Square(t1)
|
||
}
|
||
t0.Mul(t0, t1)
|
||
for s := 0; s < 8; s++ {
|
||
t0.Square(t0)
|
||
}
|
||
z.Mul(z, t0)
|
||
return e.Set(z)
|
||
}
|