mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-22 02:06:18 +08:00
852 lines
24 KiB
Go
852 lines
24 KiB
Go
package sm2
|
||
|
||
// Further references:
|
||
// [NSA]: Suite B implementer's guide to FIPS 186-3
|
||
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.4503&rep=rep1&type=pdf
|
||
// [SECG]: SECG, SEC1
|
||
// http://www.secg.org/sec1-v2.pdf
|
||
// [GM/T]: SM2 GB/T 32918.2-2016, GB/T 32918.4-2016
|
||
//
|
||
|
||
import (
|
||
"crypto"
|
||
"crypto/aes"
|
||
"crypto/cipher"
|
||
"crypto/ecdsa"
|
||
"crypto/elliptic"
|
||
"crypto/sha512"
|
||
"encoding/binary"
|
||
"errors"
|
||
"fmt"
|
||
"io"
|
||
"math/big"
|
||
"strings"
|
||
"sync"
|
||
|
||
"github.com/emmansun/gmsm/sm3"
|
||
"golang.org/x/crypto/cryptobyte"
|
||
"golang.org/x/crypto/cryptobyte/asn1"
|
||
)
|
||
|
||
const (
|
||
uncompressed byte = 0x04
|
||
compressed02 byte = 0x02
|
||
compressed03 byte = 0x03
|
||
mixed06 byte = 0x06
|
||
mixed07 byte = 0x07
|
||
)
|
||
|
||
// A invertible implements fast inverse in GF(N).
|
||
type invertible interface {
|
||
// Inverse returns the inverse of k mod Params().N.
|
||
Inverse(k *big.Int) *big.Int
|
||
}
|
||
|
||
// A combinedMult implements fast combined multiplication for verification.
|
||
type combinedMult interface {
|
||
// CombinedMult returns [s1]G + [s2]P where G is the generator.
|
||
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
|
||
}
|
||
|
||
// PrivateKey represents an ECDSA SM2 private key.
|
||
type PrivateKey struct {
|
||
ecdsa.PrivateKey
|
||
}
|
||
|
||
type pointMarshalMode byte
|
||
|
||
const (
|
||
//MarshalUncompressed uncompressed mashal mode
|
||
MarshalUncompressed pointMarshalMode = iota
|
||
//MarshalCompressed compressed mashal mode
|
||
MarshalCompressed
|
||
//MarshalMixed mixed mashal mode
|
||
MarshalMixed
|
||
)
|
||
|
||
type ciphertextSplicingOrder byte
|
||
|
||
const (
|
||
C1C3C2 ciphertextSplicingOrder = iota
|
||
C1C2C3
|
||
)
|
||
|
||
type ciphertextEncoding byte
|
||
|
||
const (
|
||
ENCODING_PLAIN ciphertextEncoding = iota
|
||
ENCODING_ASN1
|
||
)
|
||
|
||
// EncrypterOpts encryption options
|
||
type EncrypterOpts struct {
|
||
CiphertextEncoding ciphertextEncoding
|
||
PointMarshalMode pointMarshalMode
|
||
CiphertextSplicingOrder ciphertextSplicingOrder
|
||
}
|
||
|
||
// DecrypterOpts decryption options
|
||
type DecrypterOpts struct {
|
||
CiphertextEncoding ciphertextEncoding
|
||
CipherTextSplicingOrder ciphertextSplicingOrder
|
||
}
|
||
|
||
func NewPlainEncrypterOpts(marhsalMode pointMarshalMode, splicingOrder ciphertextSplicingOrder) *EncrypterOpts {
|
||
return &EncrypterOpts{ENCODING_PLAIN, marhsalMode, splicingOrder}
|
||
}
|
||
|
||
func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts {
|
||
return &DecrypterOpts{ENCODING_PLAIN, splicingOrder}
|
||
}
|
||
|
||
func (mode pointMarshalMode) mashal(curve elliptic.Curve, x, y *big.Int) []byte {
|
||
switch mode {
|
||
case MarshalCompressed:
|
||
return point2CompressedBytes(curve, x, y)
|
||
case MarshalMixed:
|
||
return point2MixedBytes(curve, x, y)
|
||
default:
|
||
return point2UncompressedBytes(curve, x, y)
|
||
}
|
||
}
|
||
|
||
var defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2}
|
||
|
||
var ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2}
|
||
|
||
var ASN1DecrypterOpts = &DecrypterOpts{ENCODING_ASN1, C1C3C2}
|
||
|
||
// directSigning is a standard Hash value that signals that no pre-hashing
|
||
// should be performed.
|
||
var directSigning crypto.Hash = 0
|
||
|
||
// Signer SM2 special signer
|
||
type Signer interface {
|
||
SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error)
|
||
}
|
||
|
||
// SM2SignerOption implements crypto.SignerOpts interface.
|
||
// It is specific for SM2, used in private key's Sign method.
|
||
type SM2SignerOption struct {
|
||
UID []byte
|
||
ForceGMSign bool
|
||
}
|
||
|
||
// NewSM2SignerOption create a SM2 specific signer option.
|
||
// forceGMSign - if use GM specific sign logic, if yes, should pass raw message to sign.
|
||
// uid - if forceGMSign is true, then you can pass uid, if no uid is provided, system will use default one.
|
||
func NewSM2SignerOption(forceGMSign bool, uid []byte) *SM2SignerOption {
|
||
opt := &SM2SignerOption{
|
||
UID: uid,
|
||
ForceGMSign: forceGMSign,
|
||
}
|
||
if forceGMSign && len(uid) == 0 {
|
||
opt.UID = defaultUID
|
||
}
|
||
return opt
|
||
}
|
||
|
||
func (*SM2SignerOption) HashFunc() crypto.Hash {
|
||
return directSigning
|
||
}
|
||
|
||
// FromECPrivateKey convert an ecdsa private key to SM2 private key.
|
||
func (priv *PrivateKey) FromECPrivateKey(key *ecdsa.PrivateKey) (*PrivateKey, error) {
|
||
if key.Curve != P256() {
|
||
return nil, errors.New("SM2: it's NOT a sm2 curve private key")
|
||
}
|
||
priv.PrivateKey = *key
|
||
return priv, nil
|
||
}
|
||
|
||
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
|
||
xx, ok := x.(*PrivateKey)
|
||
if !ok {
|
||
return false
|
||
}
|
||
return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0
|
||
}
|
||
|
||
// Sign signs digest with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016.
|
||
// The opts argument is currently used for SM2SignerOption checking only.
|
||
// If the opts argument is SM2SignerOption and its ForceGMSign is true, then it
|
||
// treats digest as raw data and take UID from opts.
|
||
//
|
||
// This method implements crypto.Signer, which is an interface to support keys
|
||
// where the private part is kept in, for example, a hardware module. Common
|
||
// uses can use the SignASN1 function in this package directly.
|
||
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
|
||
var r, s *big.Int
|
||
var err error
|
||
if sm2Opts, ok := opts.(*SM2SignerOption); ok && sm2Opts.ForceGMSign {
|
||
r, s, err = SignWithSM2(rand, &priv.PrivateKey, sm2Opts.UID, digest)
|
||
} else {
|
||
r, s, err = Sign(rand, &priv.PrivateKey, digest)
|
||
}
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
var b cryptobyte.Builder
|
||
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
||
b.AddASN1BigInt(r)
|
||
b.AddASN1BigInt(s)
|
||
})
|
||
return b.Bytes()
|
||
}
|
||
|
||
// SignWithSM2 signs uid, msg with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016.
|
||
// Deprecated: please use Sign method directly.
|
||
func (priv *PrivateKey) SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) {
|
||
return priv.Sign(rand, msg, NewSM2SignerOption(true, uid))
|
||
}
|
||
|
||
// Decrypt decrypts ciphertext msg to plaintext.
|
||
// The opts argument should be appropriate for the primitive used.
|
||
// Compliance with GB/T 32918.4-2016 chapter 7.
|
||
func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
|
||
var sm2Opts *DecrypterOpts
|
||
sm2Opts, _ = opts.(*DecrypterOpts)
|
||
return decrypt(priv, msg, sm2Opts)
|
||
}
|
||
|
||
var (
|
||
one = new(big.Int).SetInt64(1)
|
||
initonce sync.Once
|
||
)
|
||
|
||
// P256 init and return the singleton.
|
||
func P256() elliptic.Curve {
|
||
initonce.Do(initP256)
|
||
return p256
|
||
}
|
||
|
||
// randFieldElement returns a random element of the order of the given
|
||
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
|
||
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
||
params := c.Params()
|
||
b := make([]byte, params.BitSize/8+8) // (N + 64) / 8 = (256 + 64) / 8
|
||
_, err = io.ReadFull(rand, b)
|
||
if err != nil {
|
||
return
|
||
}
|
||
|
||
k = new(big.Int).SetBytes(b) // 5.Convert returned_bits to the (non-negtive) integrer c
|
||
n := new(big.Int).Sub(params.N, one)
|
||
k.Mod(k, n)
|
||
k.Add(k, one) // 6. k = (c mod (n-1)) + 1, here n = params.N
|
||
return
|
||
}
|
||
|
||
const maxRetryLimit = 100
|
||
|
||
// kdf key derivation function, compliance with GB/T 32918.4-2016 5.4.3.
|
||
func kdf(z []byte, len int) ([]byte, bool) {
|
||
limit := (len + sm3.Size - 1) >> sm3.SizeBitSize
|
||
md := sm3.New()
|
||
var countBytes [4]byte
|
||
var ct uint32 = 1
|
||
k := make([]byte, len+sm3.Size-1)
|
||
for i := 0; i < limit; i++ {
|
||
binary.BigEndian.PutUint32(countBytes[:], ct)
|
||
md.Write(z)
|
||
md.Write(countBytes[:])
|
||
copy(k[i*sm3.Size:], md.Sum(nil))
|
||
ct++
|
||
md.Reset()
|
||
}
|
||
for i := 0; i < len; i++ {
|
||
if k[i] != 0 {
|
||
return k[:len], true
|
||
}
|
||
}
|
||
return k, false
|
||
}
|
||
|
||
func calculateC3(curve elliptic.Curve, x2, y2 *big.Int, msg []byte) []byte {
|
||
md := sm3.New()
|
||
md.Write(toBytes(curve, x2))
|
||
md.Write(msg)
|
||
md.Write(toBytes(curve, y2))
|
||
return md.Sum(nil)
|
||
}
|
||
|
||
func mashalASN1Ciphertext(x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
||
var b cryptobyte.Builder
|
||
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
||
b.AddASN1BigInt(x1)
|
||
b.AddASN1BigInt(y1)
|
||
b.AddASN1OctetString(c3)
|
||
b.AddASN1OctetString(c2)
|
||
})
|
||
return b.Bytes()
|
||
}
|
||
|
||
// EncryptASN1 sm2 encrypt and output ASN.1 result, compliance with GB/T 32918.4-2016.
|
||
func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) {
|
||
return Encrypt(random, pub, msg, ASN1EncrypterOpts)
|
||
}
|
||
|
||
// Encrypt sm2 encrypt implementation, compliance with GB/T 32918.4-2016.
|
||
func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
||
curve := pub.Curve
|
||
msgLen := len(msg)
|
||
if msgLen == 0 {
|
||
return nil, nil
|
||
}
|
||
if opts == nil {
|
||
opts = defaultEncrypterOpts
|
||
}
|
||
//A3, requirement is to check if h*P is infinite point, h is 1
|
||
if pub.X.Sign() == 0 && pub.Y.Sign() == 0 {
|
||
return nil, errors.New("SM2: invalid public key")
|
||
}
|
||
for {
|
||
//A1, generate random k
|
||
k, err := randFieldElement(curve, random)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
//A2, calculate C1 = k * G
|
||
x1, y1 := curve.ScalarBaseMult(k.Bytes())
|
||
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
||
|
||
//A4, calculate k * P (point of Public Key)
|
||
x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes())
|
||
|
||
//A5, calculate t=KDF(x2||y2, klen)
|
||
var kdfCount int = 0
|
||
t, success := kdf(append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
||
if !success {
|
||
kdfCount++
|
||
if kdfCount > maxRetryLimit {
|
||
return nil, fmt.Errorf("SM2: A5, failed to calculate valid t, tried %v times", kdfCount)
|
||
}
|
||
continue
|
||
}
|
||
|
||
//A6, C2 = M + t;
|
||
c2 := make([]byte, msgLen)
|
||
for i := 0; i < msgLen; i++ {
|
||
c2[i] = msg[i] ^ t[i]
|
||
}
|
||
|
||
//A7, C3 = hash(x2||M||y2)
|
||
c3 := calculateC3(curve, x2, y2, msg)
|
||
|
||
if opts.CiphertextEncoding == ENCODING_PLAIN {
|
||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||
// c1 || c3 || c2
|
||
return append(append(c1, c3...), c2...), nil
|
||
}
|
||
// c1 || c2 || c3
|
||
return append(append(c1, c2...), c3...), nil
|
||
}
|
||
// ASN.1 format will force C3 C2 order
|
||
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
||
}
|
||
}
|
||
|
||
// GenerateKey generates a public and private key pair.
|
||
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
|
||
c := P256()
|
||
k, err := randFieldElement(c, rand)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
priv := new(PrivateKey)
|
||
priv.PublicKey.Curve = c
|
||
priv.D = k
|
||
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
||
return priv, nil
|
||
}
|
||
|
||
// Decrypt sm2 decrypt implementation by default DecrypterOpts{C1C3C2}.
|
||
// Compliance with GB/T 32918.4-2016.
|
||
func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
||
return decrypt(priv, ciphertext, nil)
|
||
}
|
||
|
||
func decryptASN1(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
return rawDecrypt(priv, x1, y1, c2, c3)
|
||
}
|
||
|
||
func rawDecrypt(priv *PrivateKey, x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
||
curve := priv.Curve
|
||
x2, y2 := curve.ScalarMult(x1, y1, priv.D.Bytes())
|
||
msgLen := len(c2)
|
||
t, success := kdf(append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
||
if !success {
|
||
return nil, errors.New("SM2: invalid cipher text")
|
||
}
|
||
|
||
//B5, calculate msg = c2 ^ t
|
||
msg := make([]byte, msgLen)
|
||
for i := 0; i < msgLen; i++ {
|
||
msg[i] = c2[i] ^ t[i]
|
||
}
|
||
u := calculateC3(curve, x2, y2, msg)
|
||
for i := 0; i < sm3.Size; i++ {
|
||
if c3[i] != u[i] {
|
||
return nil, errors.New("SM2: invalid hash value")
|
||
}
|
||
}
|
||
return msg, nil
|
||
}
|
||
|
||
func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
||
splicingOrder := C1C3C2
|
||
if opts != nil {
|
||
if opts.CiphertextEncoding == ENCODING_ASN1 {
|
||
return decryptASN1(priv, ciphertext)
|
||
}
|
||
splicingOrder = opts.CipherTextSplicingOrder
|
||
}
|
||
if ciphertext[0] == 0x30 {
|
||
return decryptASN1(priv, ciphertext)
|
||
}
|
||
ciphertextLen := len(ciphertext)
|
||
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
||
return nil, errors.New("SM2: invalid ciphertext length")
|
||
}
|
||
curve := priv.Curve
|
||
// B1, get C1, and check C1
|
||
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
//B4, calculate t=KDF(x2||y2, klen)
|
||
var c2, c3 []byte
|
||
if splicingOrder == C1C3C2 {
|
||
c2 = ciphertext[c3Start+sm3.Size:]
|
||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||
} else {
|
||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||
}
|
||
|
||
return rawDecrypt(priv, x1, y1, c2, c3)
|
||
}
|
||
|
||
func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) {
|
||
var (
|
||
x1, y1 = &big.Int{}, &big.Int{}
|
||
c2, c3 []byte
|
||
inner cryptobyte.String
|
||
)
|
||
input := cryptobyte.String(ciphertext)
|
||
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
||
!input.Empty() ||
|
||
!inner.ReadASN1Integer(x1) ||
|
||
!inner.ReadASN1Integer(y1) ||
|
||
!inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) ||
|
||
!inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) ||
|
||
!inner.Empty() {
|
||
return nil, nil, nil, nil, errors.New("SM2: invalid asn1 format ciphertext")
|
||
}
|
||
return x1, y1, c2, c3, nil
|
||
}
|
||
|
||
// ASN1Ciphertext2Plain utility method to convert ASN.1 encoding ciphertext to plain encoding format
|
||
func ASN1Ciphertext2Plain(ciphertext []byte, opts *EncrypterOpts) ([]byte, error) {
|
||
if opts == nil {
|
||
opts = defaultEncrypterOpts
|
||
}
|
||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext((ciphertext))
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
curve := P256()
|
||
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||
// c1 || c3 || c2
|
||
return append(append(c1, c3...), c2...), nil
|
||
}
|
||
// c1 || c2 || c3
|
||
return append(append(c1, c2...), c3...), nil
|
||
}
|
||
|
||
// PlainCiphertext2ASN1 utility method to convert plain encoding ciphertext to ASN.1 encoding format
|
||
func PlainCiphertext2ASN1(ciphertext []byte, from ciphertextSplicingOrder) ([]byte, error) {
|
||
if ciphertext[0] == 0x30 {
|
||
return nil, errors.New("SM2: invalid plain encoding ciphertext")
|
||
}
|
||
curve := P256()
|
||
ciphertextLen := len(ciphertext)
|
||
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
||
return nil, errors.New("SM2: invalid ciphertext length")
|
||
}
|
||
// get C1, and check C1
|
||
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
var c2, c3 []byte
|
||
|
||
if from == C1C3C2 {
|
||
c2 = ciphertext[c3Start+sm3.Size:]
|
||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||
} else {
|
||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||
}
|
||
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
||
}
|
||
|
||
// AdjustCiphertextSplicingOrder utility method to change c2 c3 order
|
||
func AdjustCiphertextSplicingOrder(ciphertext []byte, from, to ciphertextSplicingOrder) ([]byte, error) {
|
||
curve := P256()
|
||
if from == to {
|
||
return ciphertext, nil
|
||
}
|
||
ciphertextLen := len(ciphertext)
|
||
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
||
return nil, errors.New("SM2: invalid ciphertext length")
|
||
}
|
||
|
||
// get C1, and check C1
|
||
_, _, c3Start, err := bytes2Point(curve, ciphertext)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
var c1, c2, c3 []byte
|
||
|
||
c1 = ciphertext[:c3Start]
|
||
if from == C1C3C2 {
|
||
c2 = ciphertext[c3Start+sm3.Size:]
|
||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||
} else {
|
||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||
}
|
||
|
||
result := make([]byte, ciphertextLen)
|
||
copy(result, c1)
|
||
if to == C1C3C2 {
|
||
// c1 || c3 || c2
|
||
copy(result[c3Start:], c3)
|
||
copy(result[c3Start+sm3.Size:], c2)
|
||
} else {
|
||
// c1 || c2 || c3
|
||
copy(result[c3Start:], c2)
|
||
copy(result[ciphertextLen-sm3.Size:], c3)
|
||
}
|
||
return result, nil
|
||
}
|
||
|
||
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
|
||
// we use the left-most bits of the hash to match the bit-length of the order of
|
||
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
|
||
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
||
orderBits := c.Params().N.BitLen()
|
||
orderBytes := (orderBits + 7) / 8
|
||
if len(hash) > orderBytes {
|
||
hash = hash[:orderBytes]
|
||
}
|
||
|
||
ret := new(big.Int).SetBytes(hash)
|
||
excess := len(hash)*8 - orderBits
|
||
if excess > 0 {
|
||
ret.Rsh(ret, uint(excess))
|
||
}
|
||
return ret
|
||
}
|
||
|
||
const (
|
||
aesIV = "IV for ECDSA CTR"
|
||
)
|
||
|
||
var errZeroParam = errors.New("zero parameter")
|
||
|
||
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
|
||
// (exponentiation modulo P - 2, per Euler's theorem). This has better
|
||
// constant-time properties than Euclid's method (implemented in
|
||
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
|
||
// itself isn't strictly constant-time so it's not perfect.
|
||
func fermatInverse(k, N *big.Int) *big.Int {
|
||
two := big.NewInt(2)
|
||
nMinus2 := new(big.Int).Sub(N, two)
|
||
return new(big.Int).Exp(k, nMinus2, N)
|
||
}
|
||
|
||
// Sign signs a hash (which should be the result of hashing a larger message)
|
||
// using the private key, priv. If the hash is longer than the bit-length of the
|
||
// private key's curve order, the hash will be truncated to that length. It
|
||
// returns the signature as a pair of integers. Most applications should use
|
||
// SignASN1 instead of dealing directly with r, s.
|
||
//
|
||
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
|
||
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
||
maybeReadByte(rand)
|
||
|
||
// We use SDK's nouce generation implementation here.
|
||
//
|
||
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
|
||
//
|
||
// SHA2-512(priv.D || entropy || hash)[:32]
|
||
//
|
||
// The CSPRNG key is indifferentiable from a random oracle as shown in
|
||
// [Coron], the AES-CTR stream is indifferentiable from a random oracle
|
||
// under standard cryptographic assumptions (see [Larsson] for examples).
|
||
//
|
||
// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
|
||
// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
|
||
|
||
// Get 256 bits of entropy from rand.
|
||
entropy := make([]byte, 32)
|
||
|
||
_, err = io.ReadFull(rand, entropy)
|
||
if err != nil {
|
||
return
|
||
}
|
||
|
||
// Initialize an SHA-512 hash context; digest ...
|
||
md := sha512.New()
|
||
md.Write(priv.D.Bytes()) // the private key,
|
||
md.Write(entropy) // the entropy,
|
||
md.Write(hash) // and the input hash;
|
||
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
|
||
// which is an indifferentiable MAC.
|
||
|
||
// Create an AES-CTR instance to use as a CSPRNG.
|
||
block, err := aes.NewCipher(key)
|
||
if err != nil {
|
||
return nil, nil, err
|
||
}
|
||
|
||
// Create a CSPRNG that xors a stream of zeros with
|
||
// the output of the AES-CTR instance.
|
||
csprng := cipher.StreamReader{
|
||
R: zeroReader,
|
||
S: cipher.NewCTR(block, []byte(aesIV)),
|
||
}
|
||
|
||
return signGeneric(priv, &csprng, hash)
|
||
}
|
||
|
||
func signGeneric(priv *ecdsa.PrivateKey, csprng *cipher.StreamReader, hash []byte) (r, s *big.Int, err error) {
|
||
// See [NSA] 3.4.1
|
||
c := priv.PublicKey.Curve
|
||
N := c.Params().N
|
||
if N.Sign() == 0 {
|
||
return nil, nil, errZeroParam
|
||
}
|
||
var k *big.Int
|
||
e := hashToInt(hash, c)
|
||
for {
|
||
for {
|
||
k, err = randFieldElement(c, csprng)
|
||
if err != nil {
|
||
r = nil
|
||
return
|
||
}
|
||
|
||
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
|
||
r.Add(r, e) // r = x + e
|
||
r.Mod(r, N) // r = (x + e) mod N
|
||
if r.Sign() != 0 {
|
||
t := new(big.Int).Add(r, k)
|
||
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
|
||
break
|
||
}
|
||
}
|
||
}
|
||
s = new(big.Int).Mul(priv.D, r)
|
||
s = new(big.Int).Sub(k, s)
|
||
dp1 := new(big.Int).Add(priv.D, one)
|
||
|
||
var dp1Inv *big.Int
|
||
|
||
if in, ok := priv.Curve.(invertible); ok {
|
||
dp1Inv = in.Inverse(dp1)
|
||
} else {
|
||
dp1Inv = fermatInverse(dp1, N) // N != 0
|
||
}
|
||
|
||
s.Mul(s, dp1Inv)
|
||
s.Mod(s, N) // N != 0
|
||
if s.Sign() != 0 {
|
||
break
|
||
}
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
|
||
|
||
// CalculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA).
|
||
// Compliance with GB/T 32918.2-2016 5.5
|
||
func CalculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
|
||
return calculateZA(pub, uid)
|
||
}
|
||
|
||
// calculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
|
||
func calculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
|
||
uidLen := len(uid)
|
||
if uidLen >= 0x2000 {
|
||
return nil, errors.New("the uid is too long")
|
||
}
|
||
entla := uint16(uidLen) << 3
|
||
md := sm3.New()
|
||
md.Write([]byte{byte(entla >> 8), byte(entla)})
|
||
if uidLen > 0 {
|
||
md.Write(uid)
|
||
}
|
||
a := new(big.Int).Sub(pub.Params().P, big.NewInt(3))
|
||
md.Write(toBytes(pub.Curve, a))
|
||
md.Write(toBytes(pub.Curve, pub.Params().B))
|
||
md.Write(toBytes(pub.Curve, pub.Params().Gx))
|
||
md.Write(toBytes(pub.Curve, pub.Params().Gy))
|
||
md.Write(toBytes(pub.Curve, pub.X))
|
||
md.Write(toBytes(pub.Curve, pub.Y))
|
||
return md.Sum(nil), nil
|
||
}
|
||
|
||
// SignWithSM2 follow sm2 dsa standards for hash part, compliance with GB/T 32918.2-2016.
|
||
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
|
||
if len(uid) == 0 {
|
||
uid = defaultUID
|
||
}
|
||
za, err := calculateZA(&priv.PublicKey, uid)
|
||
if err != nil {
|
||
return nil, nil, err
|
||
}
|
||
md := sm3.New()
|
||
md.Write(za)
|
||
md.Write(msg)
|
||
|
||
return Sign(rand, priv, md.Sum(nil))
|
||
}
|
||
|
||
// SignASN1 signs a hash (which should be the result of hashing a larger message)
|
||
// using the private key, priv. If the hash is longer than the bit-length of the
|
||
// private key's curve order, the hash will be truncated to that length. It
|
||
// returns the ASN.1 encoded signature.
|
||
// It invokes priv.Sign directly.
|
||
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
|
||
return priv.Sign(rand, hash, opts)
|
||
}
|
||
|
||
// Verify verifies the signature in r, s of hash using the public key, pub. Its
|
||
// return value records whether the signature is valid. Most applications should
|
||
// use VerifyASN1 instead of dealing directly with r, s.
|
||
//
|
||
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
|
||
// Caller should make sure the hash's correctness.
|
||
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
|
||
c := pub.Curve
|
||
N := c.Params().N
|
||
|
||
if r.Sign() <= 0 || s.Sign() <= 0 {
|
||
return false
|
||
}
|
||
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
||
return false
|
||
}
|
||
e := hashToInt(hash, c)
|
||
t := new(big.Int).Add(r, s)
|
||
t.Mod(t, N)
|
||
if t.Sign() == 0 {
|
||
return false
|
||
}
|
||
|
||
var x *big.Int
|
||
if opt, ok := c.(combinedMult); ok {
|
||
x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes())
|
||
} else {
|
||
x1, y1 := c.ScalarBaseMult(s.Bytes())
|
||
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
|
||
x, _ = c.Add(x1, y1, x2, y2)
|
||
}
|
||
|
||
x.Add(x, e)
|
||
x.Mod(x, N)
|
||
return x.Cmp(r) == 0
|
||
}
|
||
|
||
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
|
||
// public key, pub. Its return value records whether the signature is valid.
|
||
//
|
||
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
|
||
// Caller should make sure the hash's correctness.
|
||
func VerifyASN1(pub *ecdsa.PublicKey, hash, sig []byte) bool {
|
||
var (
|
||
r, s = &big.Int{}, &big.Int{}
|
||
inner cryptobyte.String
|
||
)
|
||
input := cryptobyte.String(sig)
|
||
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
||
!input.Empty() ||
|
||
!inner.ReadASN1Integer(r) ||
|
||
!inner.ReadASN1Integer(s) ||
|
||
!inner.Empty() {
|
||
return false
|
||
}
|
||
return Verify(pub, hash, r, s)
|
||
}
|
||
|
||
// VerifyWithSM2 verifies the signature in r, s of raw msg and uid using the public key, pub.
|
||
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
|
||
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
|
||
if len(uid) == 0 {
|
||
uid = defaultUID
|
||
}
|
||
za, err := calculateZA(pub, uid)
|
||
if err != nil {
|
||
return false
|
||
}
|
||
md := sm3.New()
|
||
md.Write(za)
|
||
md.Write(msg)
|
||
return Verify(pub, md.Sum(nil), r, s)
|
||
}
|
||
|
||
// VerifyASN1WithSM2 verifies the signature in ASN.1 encoding format sig of raw msg
|
||
// and uid using the public key, pub.
|
||
//
|
||
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
|
||
func VerifyASN1WithSM2(pub *ecdsa.PublicKey, uid, msg, sig []byte) bool {
|
||
var (
|
||
r, s = &big.Int{}, &big.Int{}
|
||
inner cryptobyte.String
|
||
)
|
||
input := cryptobyte.String(sig)
|
||
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
||
!input.Empty() ||
|
||
!inner.ReadASN1Integer(r) ||
|
||
!inner.ReadASN1Integer(s) ||
|
||
!inner.Empty() {
|
||
return false
|
||
}
|
||
return VerifyWithSM2(pub, uid, msg, r, s)
|
||
}
|
||
|
||
type zr struct {
|
||
io.Reader
|
||
}
|
||
|
||
// Read replaces the contents of dst with zeros.
|
||
func (z *zr) Read(dst []byte) (n int, err error) {
|
||
for i := range dst {
|
||
dst[i] = 0
|
||
}
|
||
return len(dst), nil
|
||
}
|
||
|
||
var zeroReader = &zr{}
|
||
|
||
// IsSM2PublicKey check if given public key is a SM2 public key or not
|
||
func IsSM2PublicKey(publicKey interface{}) bool {
|
||
pub, ok := publicKey.(*ecdsa.PublicKey)
|
||
return ok && strings.EqualFold(P256().Params().Name, pub.Curve.Params().Name)
|
||
}
|