mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-24 03:06:18 +08:00
218 lines
6.1 KiB
Go
218 lines
6.1 KiB
Go
package sm2
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
|
|
"golang.org/x/crypto/cryptobyte"
|
|
"golang.org/x/crypto/cryptobyte/asn1"
|
|
)
|
|
|
|
// A invertible implements fast inverse in GF(N).
|
|
type invertible interface {
|
|
// Inverse returns the inverse of k mod Params().N.
|
|
Inverse(k *big.Int) *big.Int
|
|
}
|
|
|
|
// A combinedMult implements fast combined multiplication for verification.
|
|
type combinedMult interface {
|
|
// CombinedMult returns [s1]G + [s2]P where G is the generator.
|
|
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
|
|
// we use the left-most bits of the hash to match the bit-length of the order of
|
|
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := len(hash)*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
var errZeroParam = errors.New("zero parameter")
|
|
|
|
// Sign signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the signature as a pair of integers. Most applications should use
|
|
// SignASN1 instead of dealing directly with r, s.
|
|
//
|
|
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
|
|
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
key := new(PrivateKey)
|
|
key.PrivateKey = *priv
|
|
sig, err := SignASN1(rand, key, hash, nil)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
r, s = new(big.Int), new(big.Int)
|
|
var inner cryptobyte.String
|
|
input := cryptobyte.String(sig)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(r) ||
|
|
!inner.ReadASN1Integer(s) ||
|
|
!inner.Empty() {
|
|
return nil, nil, errors.New("invalid ASN.1 from SignASN1")
|
|
}
|
|
return r, s, nil
|
|
}
|
|
|
|
func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
|
|
// See [NSA] 3.4.1
|
|
c := priv.PublicKey.Curve
|
|
N := c.Params().N
|
|
if N.Sign() == 0 {
|
|
return nil, errZeroParam
|
|
}
|
|
var k, r, s *big.Int
|
|
e := hashToInt(hash, c)
|
|
for {
|
|
for {
|
|
k, err = randFieldElement(c, csprng)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
|
|
r.Add(r, e) // r = x + e
|
|
r.Mod(r, N) // r = (x + e) mod N
|
|
if r.Sign() != 0 {
|
|
t := new(big.Int).Add(r, k)
|
|
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
|
|
break
|
|
}
|
|
}
|
|
}
|
|
s = new(big.Int).Mul(priv.D, r)
|
|
s = new(big.Int).Sub(k, s)
|
|
dp1 := new(big.Int).Add(priv.D, one)
|
|
|
|
var dp1Inv *big.Int
|
|
|
|
if in, ok := priv.Curve.(invertible); ok {
|
|
dp1Inv = in.Inverse(dp1)
|
|
} else {
|
|
dp1Inv = fermatInverse(dp1, N) // N != 0
|
|
}
|
|
|
|
s.Mul(s, dp1Inv)
|
|
s.Mod(s, N) // N != 0
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return encodeSignature(r.Bytes(), s.Bytes())
|
|
}
|
|
|
|
// SignWithSM2 follow sm2 dsa standards for hash part, compliance with GB/T 32918.2-2016.
|
|
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
|
|
digest, err := calculateSM2Hash(&priv.PublicKey, msg, uid)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
return Sign(rand, priv, digest)
|
|
}
|
|
|
|
// Verify verifies the signature in r, s of hash using the public key, pub. Its
|
|
// return value records whether the signature is valid. Most applications should
|
|
// use VerifyASN1 instead of dealing directly with r, s.
|
|
//
|
|
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
|
|
// Caller should make sure the hash's correctness.
|
|
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
|
|
sig, err := encodeSignature(r.Bytes(), s.Bytes())
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return VerifyASN1(pub, hash, sig)
|
|
}
|
|
|
|
func verifyLegacy(pub *ecdsa.PublicKey, hash, sig []byte) bool {
|
|
rBytes, sBytes, err := parseSignature(sig)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
|
|
|
|
c := pub.Curve
|
|
N := c.Params().N
|
|
|
|
if r.Sign() <= 0 || s.Sign() <= 0 {
|
|
return false
|
|
}
|
|
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
|
return false
|
|
}
|
|
e := hashToInt(hash, c)
|
|
t := new(big.Int).Add(r, s)
|
|
t.Mod(t, N)
|
|
if t.Sign() == 0 {
|
|
return false
|
|
}
|
|
|
|
var x *big.Int
|
|
if opt, ok := c.(combinedMult); ok {
|
|
x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes())
|
|
} else {
|
|
x1, y1 := c.ScalarBaseMult(s.Bytes())
|
|
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
|
|
x, _ = c.Add(x1, y1, x2, y2)
|
|
}
|
|
|
|
x.Add(x, e)
|
|
x.Mod(x, N)
|
|
return x.Cmp(r) == 0
|
|
}
|
|
|
|
// VerifyWithSM2 verifies the signature in r, s of raw msg and uid using the public key, pub.
|
|
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
|
|
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
|
|
digest, err := calculateSM2Hash(pub, msg, uid)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return Verify(pub, digest, r, s)
|
|
}
|
|
|
|
var (
|
|
one = new(big.Int).SetInt64(1)
|
|
)
|
|
|
|
// randFieldElement returns a random element of the order of the given
|
|
// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
|
|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
|
// See randomPoint for notes on the algorithm. This has to match, or s390x
|
|
// signatures will come out different from other architectures, which will
|
|
// break TLS recorded tests.
|
|
for {
|
|
N := c.Params().N
|
|
b := make([]byte, (N.BitLen()+7)/8)
|
|
if _, err = io.ReadFull(rand, b); err != nil {
|
|
return
|
|
}
|
|
if excess := len(b)*8 - N.BitLen(); excess > 0 {
|
|
b[0] >>= excess
|
|
}
|
|
k = new(big.Int).SetBytes(b)
|
|
if k.Sign() != 0 && k.Cmp(N) < 0 {
|
|
return
|
|
}
|
|
}
|
|
}
|