gmsm/sm2/sm2_legacy.go
2022-11-23 10:21:29 +08:00

218 lines
6.1 KiB
Go

package sm2
import (
"crypto/ecdsa"
"crypto/elliptic"
"errors"
"io"
"math/big"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// A invertible implements fast inverse in GF(N).
type invertible interface {
// Inverse returns the inverse of k mod Params().N.
Inverse(k *big.Int) *big.Int
}
// A combinedMult implements fast combined multiplication for verification.
type combinedMult interface {
// CombinedMult returns [s1]G + [s2]P where G is the generator.
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
}
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
// we use the left-most bits of the hash to match the bit-length of the order of
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
var errZeroParam = errors.New("zero parameter")
// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. Most applications should use
// SignASN1 instead of dealing directly with r, s.
//
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
key := new(PrivateKey)
key.PrivateKey = *priv
sig, err := SignASN1(rand, key, hash, nil)
if err != nil {
return nil, nil, err
}
r, s = new(big.Int), new(big.Int)
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1 from SignASN1")
}
return r, s, nil
}
func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
N := c.Params().N
if N.Sign() == 0 {
return nil, errZeroParam
}
var k, r, s *big.Int
e := hashToInt(hash, c)
for {
for {
k, err = randFieldElement(c, csprng)
if err != nil {
return nil, err
}
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
r.Add(r, e) // r = x + e
r.Mod(r, N) // r = (x + e) mod N
if r.Sign() != 0 {
t := new(big.Int).Add(r, k)
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
break
}
}
}
s = new(big.Int).Mul(priv.D, r)
s = new(big.Int).Sub(k, s)
dp1 := new(big.Int).Add(priv.D, one)
var dp1Inv *big.Int
if in, ok := priv.Curve.(invertible); ok {
dp1Inv = in.Inverse(dp1)
} else {
dp1Inv = fermatInverse(dp1, N) // N != 0
}
s.Mul(s, dp1Inv)
s.Mod(s, N) // N != 0
if s.Sign() != 0 {
break
}
}
return encodeSignature(r.Bytes(), s.Bytes())
}
// SignWithSM2 follow sm2 dsa standards for hash part, compliance with GB/T 32918.2-2016.
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
digest, err := calculateSM2Hash(&priv.PublicKey, msg, uid)
if err != nil {
return nil, nil, err
}
return Sign(rand, priv, digest)
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid. Most applications should
// use VerifyASN1 instead of dealing directly with r, s.
//
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
// Caller should make sure the hash's correctness.
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
sig, err := encodeSignature(r.Bytes(), s.Bytes())
if err != nil {
return false
}
return VerifyASN1(pub, hash, sig)
}
func verifyLegacy(pub *ecdsa.PublicKey, hash, sig []byte) bool {
rBytes, sBytes, err := parseSignature(sig)
if err != nil {
return false
}
r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
e := hashToInt(hash, c)
t := new(big.Int).Add(r, s)
t.Mod(t, N)
if t.Sign() == 0 {
return false
}
var x *big.Int
if opt, ok := c.(combinedMult); ok {
x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes())
} else {
x1, y1 := c.ScalarBaseMult(s.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
x, _ = c.Add(x1, y1, x2, y2)
}
x.Add(x, e)
x.Mod(x, N)
return x.Cmp(r) == 0
}
// VerifyWithSM2 verifies the signature in r, s of raw msg and uid using the public key, pub.
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
digest, err := calculateSM2Hash(pub, msg, uid)
if err != nil {
return false
}
return Verify(pub, digest, r, s)
}
var (
one = new(big.Int).SetInt64(1)
)
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
// See randomPoint for notes on the algorithm. This has to match, or s390x
// signatures will come out different from other architectures, which will
// break TLS recorded tests.
for {
N := c.Params().N
b := make([]byte, (N.BitLen()+7)/8)
if _, err = io.ReadFull(rand, b); err != nil {
return
}
if excess := len(b)*8 - N.BitLen(); excess > 0 {
b[0] >>= excess
}
k = new(big.Int).SetBytes(b)
if k.Sign() != 0 && k.Cmp(N) < 0 {
return
}
}
}