gmsm/sm9/bn256/gfp4.go

353 lines
6.2 KiB
Go

package bn256
import "math/big"
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
//
// gfP4 implements the field of size p^4 as a quadratic extension of gfP2
// where v²=ξ and ξ=u.
type gfP4 struct {
x, y gfP2 // value is xv+y.
}
func gfP4Decode(in *gfP4) *gfP4 {
out := &gfP4{}
out.x = *gfP2Decode(&in.x)
out.y = *gfP2Decode(&in.y)
return out
}
func (e *gfP4) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ")"
}
func (e *gfP4) Set(a *gfP4) *gfP4 {
gfp4Copy(e, a)
return e
}
func (e *gfP4) SetZero() *gfP4 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP4) SetOne() *gfP4 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP4) SetV() *gfP4 {
e.x.SetOne()
e.y.SetZero()
return e
}
func (e *gfP4) IsZero() bool {
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP4) IsOne() bool {
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP4) Conjugate(a *gfP4) *gfP4 {
e.y.Set(&a.y)
e.x.Neg(&a.x)
return e
}
func (e *gfP4) Neg(a *gfP4) *gfP4 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
return e
}
func (e *gfP4) Add(a, b *gfP4) *gfP4 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
return e
}
func (e *gfP4) Double(a *gfP4) *gfP4 {
e.x.Double(&a.x)
e.y.Double(&a.y)
return e
}
func (e *gfP4) Triple(a *gfP4) *gfP4 {
e.x.Triple(&a.x)
e.y.Triple(&a.y)
return e
}
func (e *gfP4) Sub(a, b *gfP4) *gfP4 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
return e
}
func (e *gfP4) MulScalar(a *gfP4, b *gfP2) *gfP4 {
e.x.Mul(&a.x, b)
e.y.Mul(&a.y, b)
return e
}
func (e *gfP4) MulGFP(a *gfP4, b *gfP) *gfP4 {
e.x.MulScalar(&a.x, b)
e.y.MulScalar(&a.y, b)
return e
}
func (e *gfP4) Mul(a, b *gfP4) *gfP4 {
tmp := &gfP4{}
tmp.MulNC(a, b)
gfp4Copy(e, tmp)
return e
}
// Mul without value copy, will use e directly, so e can't be same as a and b.
func (e *gfP4) MulNC(a, b *gfP4) *gfP4 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
//(a0+a1*v)(b0+b1*v)=c0+c1*v, where
//c0 = a0*b0 +a1*b1*u
//c1 = (a0 + a1)(b0 + b1) - a0*b0 - a1*b1 = a0*b1 + a1*b0
tx := &e.x
ty := &e.y
v0, v1 := &gfP2{}, &gfP2{}
v0.Mul(&a.y, &b.y)
v1.Mul(&a.x, &b.x)
tx.Add(&a.x, &a.y)
ty.Add(&b.x, &b.y)
tx.Mul(tx, ty)
tx.Sub(tx, v0)
tx.Sub(tx, v1)
ty.MulU1(v1)
ty.Add(ty, v0)
return e
}
// MulNC2 muls a with (xv+y), this method is used in mulLine function
// to avoid gfP4 instance construction. e can't be same as a.
func (e *gfP4) MulNC2(a *gfP4, x, y *gfP2) *gfP4 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
//(a0+a1*v)(b0+b1*v)=c0+c1*v, where
//c0 = a0*b0 +a1*b1*u
//c1 = (a0 + a1)(b0 + b1) - a0*b0 - a1*b1 = a0*b1 + a1*b0
tx := &e.x
ty := &e.y
v0, v1 := &gfP2{}, &gfP2{}
v0.Mul(&a.y, y)
v1.Mul(&a.x, x)
tx.Add(&a.x, &a.y)
ty.Add(x, y)
tx.Mul(tx, ty)
tx.Sub(tx, v0)
tx.Sub(tx, v1)
ty.MulU1(v1)
ty.Add(ty, v0)
return e
}
// MulV: a * b * v
// (a0+a1*v)(b0+b1*v)*v=c0+c1*v, where
// (a0*b0 + a0*b1v + a1*b0*v + a1*b1*u)*v
// a0*b0*v + a0*b1*u + a1*b0*u + a1*b1*u*v
// c0 = a0*b1*u + a1*b0*u
// c1 = a0*b0 + a1*b1*u
func (e *gfP4) MulV(a, b *gfP4) *gfP4 {
tmp := &gfP4{}
tmp.MulVNC(a, b)
gfp4Copy(e, tmp)
return e
}
// MulV without value copy, will use e directly, so e can't be same as a and b.
func (e *gfP4) MulVNC(a, b *gfP4) *gfP4 {
tx := &e.x
ty := &e.y
v0, v1 := &gfP2{}, &gfP2{}
v0.Mul(&a.y, &b.y)
v1.Mul(&a.x, &b.x)
tx.Add(&a.x, &a.y)
ty.Add(&b.x, &b.y)
ty.Mul(tx, ty)
ty.Sub(ty, v0)
ty.Sub(ty, v1)
ty.MulU1(ty)
tx.MulU1(v1)
tx.Add(tx, v0)
return e
}
// MulV1: a * v
// (a0+a1*v)*v=c0+c1*v, where
// c0 = a1*u
// c1 = a0
func (e *gfP4) MulV1(a *gfP4) *gfP4 {
tx := &gfP2{}
gfp2Copy(tx, &a.y)
e.y.MulU1(&a.x)
gfp2Copy(&e.x, tx)
return e
}
func (e *gfP4) Square(a *gfP4) *gfP4 {
// Complex squaring algorithm:
// (xv+y)² = (x^2*u + y^2) + 2*x*y*v
tmp := &gfP4{}
tmp.SquareNC(a)
gfp4Copy(e, tmp)
return e
}
// Square without value copy, will use e directly, so e can't be same as a.
func (e *gfP4) SquareNC(a *gfP4) *gfP4 {
// Complex squaring algorithm:
// (xv+y)² = (x^2*u + y^2) + 2*x*y*v
// = (xu + y)(x + y) -xy(1+u) + 2xy*v
tx := &e.x
ty := &e.y
tx.SquareU(&a.x)
ty.Square(&a.y)
ty.Add(tx, ty)
tx.Mul(&a.x, &a.y)
tx.Add(tx, tx)
return e
}
// SquareV without value copy, will use e directly, so e can't be same as a.
// SquareV: (a^2) * v
// v*(xv+y)² = (x^2*u + y^2)v + 2*x*y*u
func (e *gfP4) SquareV(a *gfP4) *gfP4 {
tmp := &gfP4{}
tmp.SquareVNC(a)
gfp4Copy(e, tmp)
return e
}
func (e *gfP4) SquareVNC(a *gfP4) *gfP4 {
tx := &e.x
ty := &e.y
tx.SquareU(&a.x)
ty.Square(&a.y)
tx.Add(tx, ty)
ty.MulU(&a.x, &a.y)
ty.Add(ty, ty)
return e
}
func (e *gfP4) Invert(a *gfP4) *gfP4 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
tmp := &gfP4{}
t2 := &tmp.x
t1 := &tmp.y
t3 := &gfP2{}
t3.SquareU(&a.x)
t1.Square(&a.y)
t3.Sub(t3, t1)
t3.Invert(t3)
t1.Mul(&a.y, t3)
t1.Neg(t1)
t2.Mul(&a.x, t3)
gfp4Copy(e, tmp)
return e
}
func (e *gfP4) Exp(f *gfP4, power *big.Int) *gfP4 {
sum := (&gfP4{}).SetOne()
t := &gfP4{}
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum)
if power.Bit(i) != 0 {
sum.Mul(t, f)
} else {
sum.Set(t)
}
}
e.Set(sum)
return e
}
// (y+x*v)^p
//
// = y^p + x^p*v^p
// = f(y) + f(x) * v^p
// = f(y) + f(x) * v * v^(p-1)
func (e *gfP4) Frobenius(a *gfP4) *gfP4 {
tmp := &gfP4{}
x := &tmp.x
y := &tmp.y
x.Conjugate(&a.x)
y.Conjugate(&a.y)
x.MulScalar(x, vToPMinus1)
gfp4Copy(e, tmp)
return e
}
// (y+x*v)^(p^2)
//
// y + x*v * v^(p^2-1)
func (e *gfP4) FrobeniusP2(a *gfP4) *gfP4 {
e.Conjugate(a)
return e
}
// (y+x*v)^(p^3)
//
// = ((y+x*v)^p)^(p^2)
func (e *gfP4) FrobeniusP3(a *gfP4) *gfP4 {
tmp := &gfP4{}
x := &tmp.x
y := &tmp.y
x.Conjugate(&a.x)
y.Conjugate(&a.y)
x.MulScalar(x, vToPMinus1)
x.Neg(x)
gfp4Copy(e, tmp)
return e
}
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *gfP4) Select(p1, p2 *gfP4, cond int) *gfP4 {
q.x.Select(&p1.x, &p2.x, cond)
q.y.Select(&p1.y, &p2.y, cond)
return q
}