gmsm/sm2/sm2_legacy.go
2024-12-19 08:17:21 +08:00

417 lines
12 KiB
Go

package sm2
import (
"crypto/ecdsa"
"crypto/elliptic"
_subtle "crypto/subtle"
"errors"
"fmt"
"io"
"math/big"
"strings"
"github.com/emmansun/gmsm/internal/subtle"
"github.com/emmansun/gmsm/sm2/sm2ec"
"github.com/emmansun/gmsm/sm3"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// This file contains a math/big implementation of SM2 DSA/Encryption that is only used for
// deprecated custom curves.
// A invertible implements fast inverse in GF(N).
type invertible interface {
// Inverse returns the inverse of k mod Params().N.
Inverse(k *big.Int) *big.Int
}
// A combinedMult implements fast combined multiplication for verification.
type combinedMult interface {
// CombinedMult returns [s1]G + [s2]P where G is the generator.
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
}
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
// we use the left-most bits of the hash to match the bit-length of the order of
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
var errZeroParam = errors.New("zero parameter")
// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. Most applications should use
// SignASN1 instead of dealing directly with r, s.
//
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
key := new(PrivateKey)
key.PrivateKey = *priv
sig, err := SignASN1(rand, key, hash, nil)
if err != nil {
return nil, nil, err
}
r, s = new(big.Int), new(big.Int)
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1 from SignASN1")
}
return r, s, nil
}
func signLegacy(priv *PrivateKey, rand io.Reader, hash []byte) (sig []byte, err error) {
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
N := c.Params().N
if N.Sign() == 0 {
return nil, errZeroParam
}
var k, r, s *big.Int
e := hashToInt(hash, c)
for {
for {
k, err = randFieldElement(c, rand)
if err != nil {
return nil, err
}
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
r.Add(r, e) // r = x + e
r.Mod(r, N) // r = (x + e) mod N
if r.Sign() != 0 {
t := new(big.Int).Add(r, k)
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
break
}
}
}
s = new(big.Int).Mul(priv.D, r)
s = new(big.Int).Sub(k, s)
dp1 := new(big.Int).Add(priv.D, one)
var dp1Inv *big.Int
if in, ok := priv.Curve.(invertible); ok {
dp1Inv = in.Inverse(dp1)
} else {
dp1Inv = fermatInverse(dp1, N) // N != 0
}
s.Mul(s, dp1Inv)
s.Mod(s, N) // N != 0
if s.Sign() != 0 {
break
}
}
return encodeSignature(r.Bytes(), s.Bytes())
}
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
// (exponentiation modulo P - 2, per Euler's theorem). This has better
// constant-time properties than Euclid's method (implemented in
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
// itself isn't strictly constant-time so it's not perfect.
func fermatInverse(k, N *big.Int) *big.Int {
two := big.NewInt(2)
nMinus2 := new(big.Int).Sub(N, two)
return new(big.Int).Exp(k, nMinus2, N)
}
// SignWithSM2 follow sm2 dsa standards for hash part, compliance with GB/T 32918.2-2016.
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
digest, err := CalculateSM2Hash(&priv.PublicKey, msg, uid)
if err != nil {
return nil, nil, err
}
return Sign(rand, priv, digest)
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid. Most applications should
// use VerifyASN1 instead of dealing directly with r, s.
//
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
// Caller should make sure the hash's correctness.
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
sig, err := encodeSignature(r.Bytes(), s.Bytes())
if err != nil {
return false
}
return VerifyASN1(pub, hash, sig)
}
func verifyLegacy(pub *ecdsa.PublicKey, hash, sig []byte) bool {
rBytes, sBytes, err := parseSignature(sig)
if err != nil {
return false
}
r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
e := hashToInt(hash, c)
t := new(big.Int).Add(r, s)
t.Mod(t, N)
if t.Sign() == 0 {
return false
}
var x *big.Int
if opt, ok := c.(combinedMult); ok {
x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes())
} else {
x1, y1 := c.ScalarBaseMult(s.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
x, _ = c.Add(x1, y1, x2, y2)
}
x.Add(x, e)
x.Mod(x, N)
return x.Cmp(r) == 0
}
// VerifyWithSM2 verifies the signature in r, s of raw msg and uid using the public key, pub.
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
digest, err := CalculateSM2Hash(pub, msg, uid)
if err != nil {
return false
}
return Verify(pub, digest, r, s)
}
var (
one = new(big.Int).SetInt64(1)
)
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
// See randomPoint for notes on the algorithm. This has to match, or s390x
// signatures will come out different from other architectures, which will
// break TLS recorded tests.
for {
N := c.Params().N
b := make([]byte, (N.BitLen()+7)/8)
if _, err = io.ReadFull(rand, b); err != nil {
return
}
if excess := len(b)*8 - N.BitLen(); excess > 0 {
b[0] >>= excess
}
k = new(big.Int).SetBytes(b)
if k.Sign() != 0 && k.Cmp(N) < 0 {
return
}
}
}
func encryptLegacy(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
curve := pub.Curve
msgLen := len(msg)
var retryCount int = 0
for {
//A1, generate random k
k, err := randFieldElement(curve, random)
if err != nil {
return nil, err
}
//A2, calculate C1 = k * G
x1, y1 := curve.ScalarBaseMult(k.Bytes())
c1 := opts.pointMarshalMode.mashal(curve, x1, y1)
//A4, calculate k * P (point of Public Key)
x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes())
//A5, calculate t=KDF(x2||y2, klen)
c2 := sm3.Kdf(append(bigIntToBytes(curve, x2), bigIntToBytes(curve, y2)...), msgLen)
if subtle.ConstantTimeAllZero(c2) == 1 {
retryCount++
if retryCount > maxRetryLimit {
return nil, fmt.Errorf("sm2: A5, failed to calculate valid t, tried %v times", retryCount)
}
continue
}
//A6, C2 = M + t;
subtle.XORBytes(c2, msg, c2)
//A7, C3 = hash(x2||M||y2)
c3 := calculateC3(curve, x2, y2, msg)
if opts.ciphertextEncoding == ENCODING_PLAIN {
if opts.ciphertextSplicingOrder == C1C3C2 {
// c1 || c3 || c2
return append(append(c1, c3...), c2...), nil
}
// c1 || c2 || c3
return append(append(c1, c2...), c3...), nil
}
// ASN.1 format will force C3 C2 order
return mashalASN1Ciphertext(x1, y1, c2, c3)
}
}
func calculateC3(curve elliptic.Curve, x2, y2 *big.Int, msg []byte) []byte {
md := sm3.New()
md.Write(bigIntToBytes(curve, x2))
md.Write(msg)
md.Write(bigIntToBytes(curve, y2))
return md.Sum(nil)
}
func mashalASN1Ciphertext(x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1BigInt(x1)
b.AddASN1BigInt(y1)
b.AddASN1OctetString(c3)
b.AddASN1OctetString(c2)
})
return b.Bytes()
}
func decryptASN1(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
if err != nil {
return nil, ErrDecryption
}
return rawDecrypt(priv, x1, y1, c2, c3)
}
func rawDecrypt(priv *PrivateKey, x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
curve := priv.Curve
x2, y2 := curve.ScalarMult(x1, y1, priv.D.Bytes())
msgLen := len(c2)
msg := sm3.Kdf(append(bigIntToBytes(curve, x2), bigIntToBytes(curve, y2)...), msgLen)
if subtle.ConstantTimeAllZero(c2) == 1 {
return nil, ErrDecryption
}
//B5, calculate msg = c2 ^ t
subtle.XORBytes(msg, c2, msg)
u := calculateC3(curve, x2, y2, msg)
if _subtle.ConstantTimeCompare(u, c3) == 1 {
return msg, nil
}
return nil, ErrDecryption
}
func decryptLegacy(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
splicingOrder := C1C3C2
if opts != nil {
if opts.ciphertextEncoding == ENCODING_ASN1 {
return decryptASN1(priv, ciphertext)
}
splicingOrder = opts.ciphertextSplicingOrder
}
if ciphertext[0] == 0x30 {
return decryptASN1(priv, ciphertext)
}
ciphertextLen := len(ciphertext)
curve := priv.Curve
// B1, get C1, and check C1
x1, y1, c3Start, err := bytesToPoint(curve, ciphertext)
if err != nil {
return nil, ErrDecryption
}
//B4, calculate t=KDF(x2||y2, klen)
var c2, c3 []byte
if splicingOrder == C1C3C2 {
c2 = ciphertext[c3Start+sm3.Size:]
c3 = ciphertext[c3Start : c3Start+sm3.Size]
} else {
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
c3 = ciphertext[ciphertextLen-sm3.Size:]
}
return rawDecrypt(priv, x1, y1, c2, c3)
}
func (mode pointMarshalMode) mashal(curve elliptic.Curve, x, y *big.Int) []byte {
switch mode {
case MarshalCompressed:
return elliptic.MarshalCompressed(curve, x, y)
case MarshalHybrid:
buffer := elliptic.Marshal(curve, x, y)
buffer[0] = byte(y.Bit(0)) | hybrid06
return buffer
default:
return elliptic.Marshal(curve, x, y)
}
}
func bytesToPoint(curve elliptic.Curve, bytes []byte) (*big.Int, *big.Int, int, error) {
if len(bytes) < 1+(curve.Params().BitSize/8) {
return nil, nil, 0, fmt.Errorf("sm2: invalid bytes length %d", len(bytes))
}
format := bytes[0]
byteLen := (curve.Params().BitSize + 7) >> 3
switch format {
case uncompressed, hybrid06, hybrid07: // what's the hybrid format purpose?
if len(bytes) < 1+byteLen*2 {
return nil, nil, 0, fmt.Errorf("sm2: invalid point uncompressed/hybrid form bytes length %d", len(bytes))
}
data := make([]byte, 1+byteLen*2)
data[0] = uncompressed
copy(data[1:], bytes[1:1+byteLen*2])
x, y := sm2ec.Unmarshal(curve, data)
if x == nil || y == nil {
return nil, nil, 0, fmt.Errorf("sm2: point is not on curve %s", curve.Params().Name)
}
return x, y, 1 + byteLen*2, nil
case compressed02, compressed03:
if len(bytes) < 1+byteLen {
return nil, nil, 0, fmt.Errorf("sm2: invalid point compressed form bytes length %d", len(bytes))
}
// Make sure it's NIST curve or SM2 P-256 curve
if strings.HasPrefix(curve.Params().Name, "P-") || strings.EqualFold(curve.Params().Name, sm2ec.P256().Params().Name) {
// y² = x³ - 3x + b, prime curves
x, y := sm2ec.UnmarshalCompressed(curve, bytes[:1+byteLen])
if x == nil || y == nil {
return nil, nil, 0, fmt.Errorf("sm2: point is not on curve %s", curve.Params().Name)
}
return x, y, 1 + byteLen, nil
}
return nil, nil, 0, fmt.Errorf("sm2: unsupported point form %d, curve %s", format, curve.Params().Name)
}
return nil, nil, 0, fmt.Errorf("sm2: unknown point form %d", format)
}