gmsm/internal/sm2ec/p256_plugin_amd64.s

1116 lines
27 KiB
ArmAsm
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This file contains constant-time, 64-bit assembly implementation of
// P256. The optimizations performed here are described in detail in:
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
// 256-bit primes"
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
// https://eprint.iacr.org/2013/816.pdf
// https://github.com/emmansun/gmsm/wiki/SM2-WWMM-(2)
//go:build plugin && !purego
// plugin mode - DO NOT use the R15 Register.
// Below functions are different:
// 1.p256Sqr
// 2.p256OrdSqr
// 3.sm2P256MulInternal
// 4.sm2P256SqrInternal
// The most affected one is sm2P256MulInternal, it uses SIMD register X0 as temp storage.
#include "textflag.h"
#include "p256_macros_amd64.s"
/* ---------------------------------------*/
// This func is same as non-plugin mode, except that it uses BP to store n
// and does not use R15.
//
// func p256Sqr(res, in *p256Element, n int)
TEXT ·p256Sqr(SB),NOSPLIT,$0
MOVQ res+0(FP), res_ptr
MOVQ in+8(FP), x_ptr
MOVQ n+16(FP), BP
CMPB ·supportBMI2+0(SB), $0x01
JEQ sqrBMI2
sqrLoop:
p256SqrRound(BX)
DECQ BP
JNE sqrLoop
RET
sqrBMI2:
p256SqrRoundAdx(BX)
DECQ BP
JNE sqrBMI2
RET
/* ---------------------------------------*/
// This func is same as non-plugin mode, except that it uses BP to store n
// and does not use R15.
//
// func p256OrdSqr(res, in *p256OrdElement, n int)
TEXT ·p256OrdSqr(SB),NOSPLIT,$0
MOVQ res+0(FP), res_ptr
MOVQ in+8(FP), x_ptr
MOVQ n+16(FP), BP
CMPB ·supportBMI2+0(SB), $0x01
JEQ ordSqrLoopBMI2
ordSqrLoop:
p256OrdSqrRound(BX)
DECQ BP
JNE ordSqrLoop
RET
ordSqrLoopBMI2:
p256OrdSqrRoundAdx(BX)
DECQ BP
JNE ordSqrLoopBMI2
RET
/* ---------------------------------------*/
#undef res_ptr
#undef x_ptr
#undef y_ptr
#undef acc0
#undef acc1
#undef acc2
#undef acc3
#undef acc4
#undef acc5
#undef t0
/* ---------------------------------------*/
#define mul0 AX
#define mul1 DX
#define acc0 BX
#define acc1 CX
#define acc2 R8
#define acc3 BP
#define acc4 R10
#define acc5 R11
#define acc6 R12
#define acc7 R13
#define t0 R14
#define t1 DI
#define t2 SI
#define t3 R9
/* ---------------------------------------*/
// [acc7, acc6, acc5, acc4] = [acc7, acc6, acc5, acc4] * [t3, t2, t1, t0]
TEXT sm2P256MulInternal(SB),NOSPLIT,$8
CMPB ·supportBMI2+0(SB), $0x01
JEQ internalMulBMI2
MOVQ acc4, mul0
MULQ t0
MOVQ mul0, X0 // uses X0 as temp register/storage
MOVQ mul1, acc1
MOVQ acc4, mul0
MULQ t1
ADDQ mul0, acc1
ADCQ $0, mul1
MOVQ mul1, acc2
MOVQ acc4, mul0
MULQ t2
ADDQ mul0, acc2
ADCQ $0, mul1
MOVQ mul1, acc3
MOVQ acc4, mul0
MULQ t3
ADDQ mul0, acc3
ADCQ $0, mul1
MOVQ mul1, acc4
MOVQ acc5, mul0
MULQ t0
ADDQ mul0, acc1
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc5, mul0
MULQ t1
ADDQ acc0, acc2
ADCQ $0, mul1
ADDQ mul0, acc2
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc5, mul0
MULQ t2
ADDQ acc0, acc3
ADCQ $0, mul1
ADDQ mul0, acc3
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc5, mul0
MULQ t3
ADDQ acc0, acc4
ADCQ $0, mul1
ADDQ mul0, acc4
ADCQ $0, mul1
MOVQ mul1, acc5
MOVQ acc6, mul0
MULQ t0
ADDQ mul0, acc2
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc6, mul0
MULQ t1
ADDQ acc0, acc3
ADCQ $0, mul1
ADDQ mul0, acc3
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc6, mul0
MULQ t2
ADDQ acc0, acc4
ADCQ $0, mul1
ADDQ mul0, acc4
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc6, mul0
MULQ t3
ADDQ acc0, acc5
ADCQ $0, mul1
ADDQ mul0, acc5
ADCQ $0, mul1
MOVQ mul1, acc6
MOVQ acc7, mul0
MULQ t0
ADDQ mul0, acc3
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc7, mul0
MULQ t1
ADDQ acc0, acc4
ADCQ $0, mul1
ADDQ mul0, acc4
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc7, mul0
MULQ t2
ADDQ acc0, acc5
ADCQ $0, mul1
ADDQ mul0, acc5
ADCQ $0, mul1
MOVQ mul1, acc0
MOVQ acc7, mul0
MULQ t3
ADDQ acc0, acc6
ADCQ $0, mul1
ADDQ mul0, acc6
ADCQ $0, mul1
MOVQ mul1, acc7
PEXTRQ $0, X0, acc0
sm2P256MulReductionInline
MOVQ $0, mul0
// Add bits [511:256] of the result
ADCQ acc0, acc4
ADCQ acc1, acc5
ADCQ acc2, acc6
ADCQ acc3, acc7
ADCQ $0, mul0
// Copy result
MOVQ acc4, acc0
MOVQ acc5, acc1
MOVQ acc6, acc2
MOVQ acc7, acc3
// Subtract p256
SUBQ $-1, acc4
SBBQ p256p<>+0x08(SB), acc5
SBBQ $-1, acc6
SBBQ p256p<>+0x018(SB), acc7
SBBQ $0, mul0
// If the result of the subtraction is negative, restore the previous result
CMOVQCS acc0, acc4
CMOVQCS acc1, acc5
CMOVQCS acc2, acc6
CMOVQCS acc3, acc7
RET
internalMulBMI2:
MOVQ acc4, mul1
MULXQ t0, acc0, acc1
MOVQ acc0, X0 // uses X0 as temp register/storage
MULXQ t1, mul0, acc2
ADDQ mul0, acc1
MULXQ t2, mul0, acc3
ADCQ mul0, acc2
MULXQ t3, mul0, acc4
ADCQ mul0, acc3
ADCQ $0, acc4
MOVQ acc5, mul1
MULXQ t0, mul0, acc0
ADDQ mul0, acc1
ADCQ acc0, acc2
MULXQ t1, mul0, acc0
ADCQ $0, acc0
ADDQ mul0, acc2
ADCQ acc0, acc3
MULXQ t2, mul0, acc0
ADCQ $0, acc0
ADDQ mul0, acc3
ADCQ acc0, acc4
MULXQ t3, mul0, acc5
ADCQ $0, acc5
ADDQ mul0, acc4
ADCQ $0, acc5
MOVQ acc6, mul1
MULXQ t0, mul0, acc0
ADDQ mul0, acc2
ADCQ acc0, acc3
MULXQ t1, mul0, acc0
ADCQ $0, acc0
ADDQ mul0, acc3
ADCQ acc0, acc4
MULXQ t2, mul0, acc0
ADCQ $0, acc0
ADDQ mul0, acc4
ADCQ acc0, acc5
MULXQ t3, mul0, acc6
ADCQ $0, acc6
ADDQ mul0, acc5
ADCQ $0, acc6
MOVQ acc7, mul1
MULXQ t0, mul0, acc0
ADDQ mul0, acc3
ADCQ acc0, acc4
MULXQ t1, mul0, acc0
ADCQ $0, acc0
ADDQ mul0, acc4
ADCQ acc0, acc5
MULXQ t2, mul0, acc0
ADCQ $0, acc0
ADDQ mul0, acc5
ADCQ acc0, acc6
MULXQ t3, mul0, acc7
ADCQ $0, acc7
ADDQ mul0, acc6
ADCQ $0, acc7
PEXTRQ $0, X0, acc0
sm2P256MulReductionInline
MOVQ $0, mul0
// Add bits [511:256] of the result
ADCQ acc0, acc4
ADCQ acc1, acc5
ADCQ acc2, acc6
ADCQ acc3, acc7
ADCQ $0, mul0
// Copy result
MOVQ acc4, acc0
MOVQ acc5, acc1
MOVQ acc6, acc2
MOVQ acc7, acc3
// Subtract p256
SUBQ $-1, acc4
SBBQ p256p<>+0x08(SB), acc5
SBBQ $-1, acc6
SBBQ p256p<>+0x018(SB), acc7
SBBQ $0, mul0
// If the result of the subtraction is negative, restore the previous result
CMOVQCS acc0, acc4
CMOVQCS acc1, acc5
CMOVQCS acc2, acc6
CMOVQCS acc3, acc7
RET
/* ---------------------------------------*/
// [acc7, acc6, acc5, acc4] = [acc7, acc6, acc5, acc4]^2
TEXT sm2P256SqrInternal(SB),NOSPLIT,$8
CMPB ·supportBMI2+0(SB), $0x01
JEQ internalSqrBMI2
p256SqrInternalInline
RET
internalSqrBMI2:
p256SqrInternalInlineAdx
RET
// Below is same as non-plugin
/* ---------------------------------------*/
#define LDacc(src) MOVQ src(8*0), acc4; MOVQ src(8*1), acc5; MOVQ src(8*2), acc6; MOVQ src(8*3), acc7
#define LDt(src) MOVQ src(8*0), t0; MOVQ src(8*1), t1; MOVQ src(8*2), t2; MOVQ src(8*3), t3
#define ST(dst) MOVQ acc4, dst(8*0); MOVQ acc5, dst(8*1); MOVQ acc6, dst(8*2); MOVQ acc7, dst(8*3)
#define STt(dst) MOVQ t0, dst(8*0); MOVQ t1, dst(8*1); MOVQ t2, dst(8*2); MOVQ t3, dst(8*3)
#define acc2t MOVQ acc4, t0; MOVQ acc5, t1; MOVQ acc6, t2; MOVQ acc7, t3
#define t2acc MOVQ t0, acc4; MOVQ t1, acc5; MOVQ t2, acc6; MOVQ t3, acc7
/* ---------------------------------------*/
#define x1in(off) (32*0 + off)(SP)
#define y1in(off) (32*1 + off)(SP)
#define z1in(off) (32*2 + off)(SP)
#define x2in(off) (32*3 + off)(SP)
#define y2in(off) (32*4 + off)(SP)
#define xout(off) (32*5 + off)(SP)
#define yout(off) (32*6 + off)(SP)
#define zout(off) (32*7 + off)(SP)
#define s2(off) (32*8 + off)(SP)
#define z1sqr(off) (32*9 + off)(SP)
#define h(off) (32*10 + off)(SP)
#define r(off) (32*11 + off)(SP)
#define hsqr(off) (32*12 + off)(SP)
#define rsqr(off) (32*13 + off)(SP)
#define hcub(off) (32*14 + off)(SP)
#define rptr (32*15)(SP)
#define sel_save (32*15 + 8)(SP)
#define zero_save (32*15 + 8 + 4)(SP)
#define p256PointAddAffineInline() \
\// Store pointer to result
MOVQ mul0, rptr \
MOVL t1, sel_save \
MOVL t2, zero_save \
\// Negate y2in based on sign
MOVQ (16*2 + 8*0)(CX), acc4 \
MOVQ (16*2 + 8*1)(CX), acc5 \
MOVQ (16*2 + 8*2)(CX), acc6 \
MOVQ (16*2 + 8*3)(CX), acc7 \
MOVQ $-1, acc0 \
MOVQ p256p<>+0x08(SB), acc1 \
MOVQ $-1, acc2 \
MOVQ p256p<>+0x018(SB), acc3 \
XORQ mul0, mul0 \
\// Speculatively subtract
SUBQ acc4, acc0 \
SBBQ acc5, acc1 \
SBBQ acc6, acc2 \
SBBQ acc7, acc3 \
SBBQ $0, mul0 \
MOVQ acc0, t0 \
MOVQ acc1, t1 \
MOVQ acc2, t2 \
MOVQ acc3, t3 \
\// Add in case the operand was > p256
ADDQ $-1, acc0 \
ADCQ p256p<>+0x08(SB), acc1 \
ADCQ $-1, acc2 \
ADCQ p256p<>+0x018(SB), acc3 \
ADCQ $0, mul0 \ // ZF := 1 if mul0 == 0 after ADC
CMOVQNE t0, acc0 \ // CMOVQNE: Move if not equal (ZF == 0)
CMOVQNE t1, acc1 \
CMOVQNE t2, acc2 \
CMOVQNE t3, acc3 \
\// If condition is 0, keep original value
TESTQ DX, DX \ // ZF := 1 if (DX AND DX == 0)
CMOVQEQ acc4, acc0 \ // CMOVQEQ: Move if equal (ZF == 1)
CMOVQEQ acc5, acc1 \
CMOVQEQ acc6, acc2 \
CMOVQEQ acc7, acc3 \
\// Store result
MOVQ acc0, y2in(8*0) \
MOVQ acc1, y2in(8*1) \
MOVQ acc2, y2in(8*2) \
MOVQ acc3, y2in(8*3) \
\// Begin point add
LDacc (z1in) \
CALL sm2P256SqrInternal(SB) \// z1ˆ2
ST (z1sqr) \
\
LDt (x2in) \
CALL sm2P256MulInternal(SB) \// u2 = x2 * z1ˆ2
\
LDt (x1in) \
p256SubInline2 \// h = u2 - x1
ST (h) \
\
LDt (z1in) \
CALL sm2P256MulInternal(SB) \// z3 = h * z1
ST (zout) \
\
LDacc (z1sqr) \
CALL sm2P256MulInternal(SB) \// z1ˆ3
\
LDt (y2in) \
CALL sm2P256MulInternal(SB) \// s2 = y2 * z1ˆ3
ST (s2) \
\
LDt (y1in) \
p256SubInline2 \// r = s2 - y1
ST (r) \
\
CALL sm2P256SqrInternal(SB) \// rsqr = rˆ2
ST (rsqr) \
\
LDacc (h) \
CALL sm2P256SqrInternal(SB) \// hsqr = hˆ2
ST (hsqr) \
\
LDt (h) \
CALL sm2P256MulInternal(SB) \// hcub = hˆ3
ST (hcub) \
\
LDt (y1in) \
CALL sm2P256MulInternal(SB) \// s2 = y1 * hˆ3
ST (s2) \
\
LDacc (x1in) \
LDt (hsqr) \
CALL sm2P256MulInternal(SB) \// x1 * hˆ2
ST (h) \
\
p256MulBy2Inline \// x1 * hˆ2 * 2, inline
LDacc (rsqr) \
p256SubInline2 \// rˆ2 - x1 * hˆ2 * 2
\
LDt (hcub) \
p256SubInline \
STt (xout) \// xout = rˆ2 - 2 * x1 * hˆ2 - h^3
LDacc (h) \
p256SubInline2 \
\
LDt (r) \
CALL sm2P256MulInternal(SB) \
\
LDt (s2) \
p256SubInline2 \
ST (yout) \
\// Load stored values from stack
MOVQ rptr, AX \
// func p256PointAddAffineAsm(res, in1 *SM2P256Point, in2 *p256AffinePoint, sign, sel, zero int)
TEXT ·p256PointAddAffineAsm(SB),0,$512-48
// Move input to stack in order to free registers
MOVQ res+0(FP), AX
MOVQ in1+8(FP), BX
MOVQ in2+16(FP), CX
MOVQ sign+24(FP), DX
MOVQ sel+32(FP), t1
MOVQ zero+40(FP), t2
CMPB ·supportAVX2+0(SB), $0x01
JEQ pointaddaffine_avx2
MOVOU (16*0)(BX), X0
MOVOU (16*1)(BX), X1
MOVOU (16*2)(BX), X2
MOVOU (16*3)(BX), X3
MOVOU (16*4)(BX), X4
MOVOU (16*5)(BX), X5
MOVOU X0, x1in(16*0)
MOVOU X1, x1in(16*1)
MOVOU X2, y1in(16*0)
MOVOU X3, y1in(16*1)
MOVOU X4, z1in(16*0)
MOVOU X5, z1in(16*1)
MOVOU (16*0)(CX), X0
MOVOU (16*1)(CX), X1
MOVOU X0, x2in(16*0)
MOVOU X1, x2in(16*1)
p256PointAddAffineInline()
// The result is not valid if (sel == 0), conditional choose
MOVOU xout(16*0), X0
MOVOU xout(16*1), X1
MOVOU yout(16*0), X2
MOVOU yout(16*1), X3
MOVOU zout(16*0), X4
MOVOU zout(16*1), X5
MOVL sel_save, X6 // sel
MOVL zero_save, X7 // zero
PXOR X8, X8 // X8's bits are all 0
PCMPEQL X9, X9 // X9's bits are all 1
PSHUFD $0, X6, X6
PSHUFD $0, X7, X7
PCMPEQL X8, X6 // X6's bits are all 1 if sel = 0, else are 0
PCMPEQL X8, X7 // X7's bits are all 1 if zero = 0, else are 0
MOVOU X6, X15
PANDN X9, X15 // X15 = NOT(X6)
MOVOU x1in(16*0), X9
MOVOU x1in(16*1), X10
MOVOU y1in(16*0), X11
MOVOU y1in(16*1), X12
MOVOU z1in(16*0), X13
MOVOU z1in(16*1), X14
PAND X15, X0
PAND X15, X1
PAND X15, X2
PAND X15, X3
PAND X15, X4
PAND X15, X5
PAND X6, X9
PAND X6, X10
PAND X6, X11
PAND X6, X12
PAND X6, X13
PAND X6, X14
PXOR X9, X0
PXOR X10, X1
PXOR X11, X2
PXOR X12, X3
PXOR X13, X4
PXOR X14, X5
// Similarly if zero == 0
PCMPEQL X9, X9
MOVOU X7, X15
PANDN X9, X15 // X15 = NOT(X7)
MOVOU x2in(16*0), X9
MOVOU x2in(16*1), X10
MOVOU y2in(16*0), X11
MOVOU y2in(16*1), X12
MOVOU p256one<>+0x00(SB), X13
MOVOU p256one<>+0x10(SB), X14
PAND X15, X0
PAND X15, X1
PAND X15, X2
PAND X15, X3
PAND X15, X4
PAND X15, X5
PAND X7, X9
PAND X7, X10
PAND X7, X11
PAND X7, X12
PAND X7, X13
PAND X7, X14
PXOR X9, X0
PXOR X10, X1
PXOR X11, X2
PXOR X12, X3
PXOR X13, X4
PXOR X14, X5
// Finally output the result
MOVOU X0, (16*0)(AX)
MOVOU X1, (16*1)(AX)
MOVOU X2, (16*2)(AX)
MOVOU X3, (16*3)(AX)
MOVOU X4, (16*4)(AX)
MOVOU X5, (16*5)(AX)
MOVQ $0, rptr
RET
pointaddaffine_avx2:
VMOVDQU (32*0)(BX), Y0
VMOVDQU (32*1)(BX), Y1
VMOVDQU (32*2)(BX), Y2
VMOVDQU Y0, x1in(32*0)
VMOVDQU Y1, y1in(32*0)
VMOVDQU Y2, z1in(32*0)
VMOVDQU (32*0)(CX), Y0
VMOVDQU Y0, x2in(32*0)
p256PointAddAffineInline()
// The result is not valid if (sel == 0), conditional choose
VPXOR Y8, Y8, Y8 // Y8's bits are all 0
VPBROADCASTD sel_save, Y6 // sel
VPBROADCASTD zero_save, Y7 // zero
VPCMPEQD Y8, Y6, Y6 // Y6's bits are all 1 if sel = 0, else are 0
VPCMPEQD Y8, Y7, Y7 // Y7's bits are all 1 if zero = 0, else are 0
VPANDN xout(32*0), Y6, Y0
VPANDN yout(32*0), Y6, Y1
VPANDN zout(32*0), Y6, Y2
VPAND x1in(32*0), Y6, Y9
VPAND y1in(32*0), Y6, Y10
VPAND z1in(32*0), Y6, Y11
VPXOR Y9, Y0, Y0
VPXOR Y10, Y1, Y1
VPXOR Y11, Y2, Y2
// Similarly if zero == 0
VPANDN Y0, Y7, Y0
VPANDN Y1, Y7, Y1
VPANDN Y2, Y7, Y2
VPAND x2in(32*0), Y7, Y9
VPAND y2in(32*0), Y7, Y10
VPAND p256one<>+0x00(SB), Y7, Y11
VPXOR Y9, Y0, Y0
VPXOR Y10, Y1, Y1
VPXOR Y11, Y2, Y2
// Finally output the result
VMOVDQU Y0, (32*0)(AX)
VMOVDQU Y1, (32*1)(AX)
VMOVDQU Y2, (32*2)(AX)
MOVQ $0, rptr
VZEROUPPER
RET
#undef x1in
#undef y1in
#undef z1in
#undef x2in
#undef y2in
#undef xout
#undef yout
#undef zout
#undef s2
#undef z1sqr
#undef h
#undef r
#undef hsqr
#undef rsqr
#undef hcub
#undef rptr
#undef sel_save
#undef zero_save
/* ---------------------------------------*/
#define x1in(off) (32*0 + off)(SP)
#define y1in(off) (32*1 + off)(SP)
#define z1in(off) (32*2 + off)(SP)
#define x2in(off) (32*3 + off)(SP)
#define y2in(off) (32*4 + off)(SP)
#define z2in(off) (32*5 + off)(SP)
#define xout(off) (32*6 + off)(SP)
#define yout(off) (32*7 + off)(SP)
#define zout(off) (32*8 + off)(SP)
#define u1(off) (32*9 + off)(SP)
#define u2(off) (32*10 + off)(SP)
#define s1(off) (32*11 + off)(SP)
#define s2(off) (32*12 + off)(SP)
#define z1sqr(off) (32*13 + off)(SP)
#define z2sqr(off) (32*14 + off)(SP)
#define h(off) (32*15 + off)(SP)
#define r(off) (32*16 + off)(SP)
#define hsqr(off) (32*17 + off)(SP)
#define rsqr(off) (32*18 + off)(SP)
#define hcub(off) (32*19 + off)(SP)
#define rptr (32*20)(SP)
#define points_eq (32*20+8)(SP)
#define p256PointAddInline() \
\// Begin point add
LDacc (z2in) \
CALL sm2P256SqrInternal(SB) \// z2ˆ2
ST (z2sqr) \
LDt (z2in) \
CALL sm2P256MulInternal(SB) \// z2ˆ3
LDt (y1in) \
CALL sm2P256MulInternal(SB) \// s1 = z2ˆ3*y1
ST (s1) \
\
LDacc (z1in) \
CALL sm2P256SqrInternal(SB) \// z1ˆ2
ST (z1sqr) \
LDt (z1in) \
CALL sm2P256MulInternal(SB) \// z1ˆ3
LDt (y2in) \
CALL sm2P256MulInternal(SB) \// s2 = z1ˆ3*y2
ST (s2) \
\
LDt (s1) \
p256SubInline2 \// r = s2 - s1
ST (r) \
p256IsZeroInline \
MOVQ AX, points_eq \
\
LDacc (z2sqr) \
LDt (x1in) \
CALL sm2P256MulInternal(SB) \// u1 = x1 * z2ˆ2
ST (u1) \
LDacc (z1sqr) \
LDt (x2in) \
CALL sm2P256MulInternal(SB) \// u2 = x2 * z1ˆ2
ST (u2) \
\
LDt (u1) \
p256SubInline2 \// h = u2 - u1
ST (h) \
p256IsZeroInline \
ANDQ points_eq, AX \
MOVQ AX, points_eq \
\
LDacc (r) \
CALL sm2P256SqrInternal(SB) \// rsqr = rˆ2
ST (rsqr) \
\
LDacc (h) \
CALL sm2P256SqrInternal(SB) \// hsqr = hˆ2
ST (hsqr) \
\
LDt (h) \
CALL sm2P256MulInternal(SB) \// hcub = hˆ3
ST (hcub) \
\
LDt (s1) \
CALL sm2P256MulInternal(SB) \
ST (s2) \
\
LDacc (z1in) \
LDt (z2in) \
CALL sm2P256MulInternal(SB) \// z1 * z2
LDt (h) \
CALL sm2P256MulInternal(SB) \// z1 * z2 * h
ST (zout) \
\
LDacc (hsqr) \
LDt (u1) \
CALL sm2P256MulInternal(SB) \// hˆ2 * u1
ST (u2) \
\
p256MulBy2Inline \// u1 * hˆ2 * 2, inline
LDacc (rsqr) \
p256SubInline2 \// rˆ2 - u1 * hˆ2 * 2
\
LDt (hcub) \
p256SubInline \
STt (xout) \
LDacc (u2) \
p256SubInline2 \
\
LDt (r) \
CALL sm2P256MulInternal(SB) \
\
LDt (s2) \
p256SubInline2 \
ST (yout) \
//func p256PointAddAsm(res, in1, in2 *SM2P256Point) int
TEXT ·p256PointAddAsm(SB),0,$680-32
// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
// Move input to stack in order to free registers
MOVQ res+0(FP), AX
MOVQ in1+8(FP), BX
MOVQ in2+16(FP), CX
CMPB ·supportAVX2+0(SB), $0x01
JEQ pointadd_avx2
MOVOU (16*0)(BX), X0
MOVOU (16*1)(BX), X1
MOVOU (16*2)(BX), X2
MOVOU (16*3)(BX), X3
MOVOU (16*4)(BX), X4
MOVOU (16*5)(BX), X5
MOVOU X0, x1in(16*0)
MOVOU X1, x1in(16*1)
MOVOU X2, y1in(16*0)
MOVOU X3, y1in(16*1)
MOVOU X4, z1in(16*0)
MOVOU X5, z1in(16*1)
MOVOU (16*0)(CX), X0
MOVOU (16*1)(CX), X1
MOVOU (16*2)(CX), X2
MOVOU (16*3)(CX), X3
MOVOU (16*4)(CX), X4
MOVOU (16*5)(CX), X5
MOVOU X0, x2in(16*0)
MOVOU X1, x2in(16*1)
MOVOU X2, y2in(16*0)
MOVOU X3, y2in(16*1)
MOVOU X4, z2in(16*0)
MOVOU X5, z2in(16*1)
// Store pointer to result
MOVQ AX, rptr
p256PointAddInline()
MOVOU xout(16*0), X0
MOVOU xout(16*1), X1
MOVOU yout(16*0), X2
MOVOU yout(16*1), X3
MOVOU zout(16*0), X4
MOVOU zout(16*1), X5
// Finally output the result
MOVQ rptr, AX
MOVQ $0, rptr
MOVOU X0, (16*0)(AX)
MOVOU X1, (16*1)(AX)
MOVOU X2, (16*2)(AX)
MOVOU X3, (16*3)(AX)
MOVOU X4, (16*4)(AX)
MOVOU X5, (16*5)(AX)
MOVQ points_eq, AX
MOVQ AX, ret+24(FP)
RET
pointadd_avx2:
VMOVDQU (32*0)(BX), Y0
VMOVDQU (32*1)(BX), Y1
VMOVDQU (32*2)(BX), Y2
VMOVDQU Y0, x1in(32*0)
VMOVDQU Y1, y1in(32*0)
VMOVDQU Y2, z1in(32*0)
VMOVDQU (32*0)(CX), Y0
VMOVDQU (32*1)(CX), Y1
VMOVDQU (32*2)(CX), Y2
VMOVDQU Y0, x2in(32*0)
VMOVDQU Y1, y2in(32*0)
VMOVDQU Y2, z2in(32*0)
// Store pointer to result
MOVQ AX, rptr
p256PointAddInline()
VMOVDQU xout(32*0), Y0
VMOVDQU yout(32*0), Y1
VMOVDQU zout(32*0), Y2
// Finally output the result
MOVQ rptr, AX
MOVQ $0, rptr
VMOVDQU Y0, (32*0)(AX)
VMOVDQU Y1, (32*1)(AX)
VMOVDQU Y2, (32*2)(AX)
MOVQ points_eq, AX
MOVQ AX, ret+24(FP)
VZEROUPPER
RET
#undef x1in
#undef y1in
#undef z1in
#undef x2in
#undef y2in
#undef z2in
#undef xout
#undef yout
#undef zout
#undef s1
#undef s2
#undef u1
#undef u2
#undef z1sqr
#undef z2sqr
#undef h
#undef r
#undef hsqr
#undef rsqr
#undef hcub
#undef rptr
/* ---------------------------------------*/
#define x(off) (32*0 + off)(SP)
#define y(off) (32*1 + off)(SP)
#define z(off) (32*2 + off)(SP)
#define s(off) (32*3 + off)(SP)
#define m(off) (32*4 + off)(SP)
#define zsqr(off) (32*5 + off)(SP)
#define tmp(off) (32*6 + off)(SP)
#define rptr (32*7)(SP)
#define calZ() \
LDacc (z) \
CALL sm2P256SqrInternal(SB) \
ST (zsqr) \ // ZZ = Z1^2
\
LDt (x) \
p256AddInline \
STt (m) \ // M = ZZ + X1
\
LDacc (z) \
LDt (y) \
CALL sm2P256MulInternal(SB) \ // Z1 * Y1
p256MulBy2Inline \ // Z3 = 2(Z1 * Y1) = (Y1 + Z1)^2 - Y1^2 - Z1^2
#define calX() \
LDacc (x) \
LDt (zsqr) \
p256SubInline2 \ // X1 - ZZ
LDt (m) \
CALL sm2P256MulInternal(SB) \ // M = (X1 - ZZ) * (X1 + ZZ) = X1^2 - ZZ^2
ST (m) \
\// Multiply by 3
p256TripleInline \
STt (m) \ // M = 3 * (X1^2 - ZZ^2)
\////////////////////////
LDacc (y) \
p256MulBy2Inline2 \
CALL sm2P256SqrInternal(SB) \ // 4 * YY = (2*Y1)^2
ST (s) \ // S = 4 * YY
CALL sm2P256SqrInternal(SB) \ // (4 * YY)^2 = 16 * YYYY
\// Divide by 2
XORQ mul0, mul0 \
MOVQ acc4, t0 \
MOVQ acc5, t1 \
MOVQ acc6, t2 \
MOVQ acc7, t3 \
\ // [mul0, acc7, acc6, acc5, acc4] := [acc7, acc6, acc5, acc4] + P
ADDQ $-1, acc4 \
ADCQ p256p<>+0x08(SB), acc5 \
ADCQ $-1, acc6 \
ADCQ p256p<>+0x018(SB), acc7 \
ADCQ $0, mul0 \
TESTQ $1, t0 \ // ZF := 1 if (t0 AND 1 == 0)
\ // CMOVQEQ: Move if equal (ZF == 1)
CMOVQEQ t0, acc4 \ // acc4 := t0 if (ZF == 1)
CMOVQEQ t1, acc5 \ // acc5 := t1 if (ZF == 1)
CMOVQEQ t2, acc6 \ // acc6 := t2 if (ZF == 1)
CMOVQEQ t3, acc7 \ // acc7 := t3 if (ZF == 1)
ANDQ t0, mul0 \ // mul0 := t0 AND mul0 (mul0 := 0 if (ZF == 1) else keeping the original value 0 or 1)
\ // Divide even by 2
SHRQ $1, acc5, acc4 \ // acc4 := acc4 >> 1 | acc5 << 63
SHRQ $1, acc6, acc5 \ // acc5 := acc5 >> 1 | acc6 << 63
SHRQ $1, acc7, acc6 \ // acc6 := acc6 >> 1 | acc7 << 63
SHRQ $1, mul0, acc7 \ // acc7 := acc7 >> 1 | mul0 << 63
ST (y) \ // Y3 = 8 * YYYY
\/////////////////////////
LDacc (x) \
LDt (s) \
CALL sm2P256MulInternal(SB) \ // X1 * 4 * YY
ST (s) \ // S = 4 * X1 * YY = 2 * ((X1+YY)^2 - XX - YYYY)
p256MulBy2Inline \
STt (tmp) \ // tmp = 2*S = 8 * X1 * YY
\
LDacc (m) \
CALL sm2P256SqrInternal(SB) \ // M^2 = (3 * (X1^2 - ZZ^2))^2
LDt (tmp) \
p256SubInline2 \ // X3 = M^2 - 2*S
#define calY() \
acc2t \
LDacc (s) \ // S = 4 * X1 * YY = 2 * ((X1+YY)^2 - XX - YYYY)
p256SubInline2 \ // S - X3
\
LDt (m) \
CALL sm2P256MulInternal(SB) \ // M * (S - X3)
\
LDt (y) \
p256SubInline2 \ // Y3 = M * (S - X3) - 8 * YYYYY
#define lastP256PointDouble() \
\ // See https://hyperelliptic.org/EFD/g1p/data/shortw/jacobian-3/doubling/dbl-2007-bl
calZ() \
MOVQ rptr, AX \
\// Store z
MOVQ t0, (16*4 + 8*0)(AX) \
MOVQ t1, (16*4 + 8*1)(AX) \
MOVQ t2, (16*4 + 8*2)(AX) \
MOVQ t3, (16*4 + 8*3)(AX) \
\
calX() \
MOVQ rptr, AX \
\// Store x
MOVQ acc4, (16*0 + 8*0)(AX) \
MOVQ acc5, (16*0 + 8*1)(AX) \
MOVQ acc6, (16*0 + 8*2)(AX) \
MOVQ acc7, (16*0 + 8*3)(AX) \
\
calY() \
MOVQ rptr, AX \
\// Store y
MOVQ acc4, (16*2 + 8*0)(AX) \
MOVQ acc5, (16*2 + 8*1)(AX) \
MOVQ acc6, (16*2 + 8*2)(AX) \
MOVQ acc7, (16*2 + 8*3)(AX) \
\///////////////////////
MOVQ $0, rptr \
//func p256PointDoubleAsm(res, in *SM2P256Point)
TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$256-16
// Move input to stack in order to free registers
MOVQ res+0(FP), AX
MOVQ in+8(FP), BX
p256PointDoubleInit()
// Store pointer to result
MOVQ AX, rptr
// Begin point double
lastP256PointDouble()
RET
#define storeTmpX() \
MOVQ acc4, x(8*0) \
MOVQ acc5, x(8*1) \
MOVQ acc6, x(8*2) \
MOVQ acc7, x(8*3) \
#define storeTmpY() \
MOVQ acc4, y(8*0) \
MOVQ acc5, y(8*1) \
MOVQ acc6, y(8*2) \
MOVQ acc7, y(8*3) \
#define storeTmpZ() \
MOVQ t0, z(8*0) \
MOVQ t1, z(8*1) \
MOVQ t2, z(8*2) \
MOVQ t3, z(8*3) \
#define p256PointDoubleRound() \
calZ() \
storeTmpZ() \
calX() \
storeTmpX() \
calY() \
storeTmpY() \
//func p256PointDouble6TimesAsm(res, in *SM2P256Point)
TEXT ·p256PointDouble6TimesAsm(SB),NOSPLIT,$256-16
// Move input to stack in order to free registers
MOVQ res+0(FP), AX
MOVQ in+8(FP), BX
p256PointDoubleInit()
// Store pointer to result
MOVQ AX, rptr
// point double 1-5 rounds
p256PointDoubleRound()
p256PointDoubleRound()
p256PointDoubleRound()
p256PointDoubleRound()
p256PointDoubleRound()
// last point double round
lastP256PointDouble()
RET
/* ---------------------------------------*/