gmsm/sm3/sm3.go

248 lines
5.4 KiB
Go

// Package sm3 implements ShangMi(SM) sm3 hash algorithm.
package sm3
// [GM/T] SM3 GB/T 32905-2016
import (
"encoding/binary"
"errors"
"hash"
)
// Size the size of a SM3 checksum in bytes.
const Size = 32
// SizeBitSize the bit size of Size.
const SizeBitSize = 5
// BlockSize the blocksize of SM3 in bytes.
const BlockSize = 64
const (
chunk = 64
init0 = 0x7380166f
init1 = 0x4914b2b9
init2 = 0x172442d7
init3 = 0xda8a0600
init4 = 0xa96f30bc
init5 = 0x163138aa
init6 = 0xe38dee4d
init7 = 0xb0fb0e4e
)
// digest represents the partial evaluation of a checksum.
type digest struct {
h [8]uint32
x [chunk]byte
nx int
len uint64
}
const (
magic = "sm3\x03"
marshaledSize = len(magic) + 8*4 + chunk + 8
)
func (d *digest) MarshalBinary() ([]byte, error) {
return d.AppendBinary(make([]byte, 0, marshaledSize))
}
func (d *digest) AppendBinary(b []byte) ([]byte, error) {
b = append(b, magic...)
b = appendUint32(b, d.h[0])
b = appendUint32(b, d.h[1])
b = appendUint32(b, d.h[2])
b = appendUint32(b, d.h[3])
b = appendUint32(b, d.h[4])
b = appendUint32(b, d.h[5])
b = appendUint32(b, d.h[6])
b = appendUint32(b, d.h[7])
b = append(b, d.x[:d.nx]...)
b = append(b, make([]byte, len(d.x)-d.nx)...)
b = appendUint64(b, d.len)
return b, nil
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || (string(b[:len(magic)]) != magic) {
return errors.New("sm3: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("sm3: invalid hash state size")
}
b = b[len(magic):]
b, d.h[0] = consumeUint32(b)
b, d.h[1] = consumeUint32(b)
b, d.h[2] = consumeUint32(b)
b, d.h[3] = consumeUint32(b)
b, d.h[4] = consumeUint32(b)
b, d.h[5] = consumeUint32(b)
b, d.h[6] = consumeUint32(b)
b, d.h[7] = consumeUint32(b)
b = b[copy(d.x[:], b):]
b, d.len = consumeUint64(b)
d.nx = int(d.len % chunk)
return nil
}
func appendUint64(b []byte, x uint64) []byte {
var a [8]byte
binary.BigEndian.PutUint64(a[:], x)
return append(b, a[:]...)
}
func appendUint32(b []byte, x uint32) []byte {
var a [4]byte
binary.BigEndian.PutUint32(a[:], x)
return append(b, a[:]...)
}
func consumeUint64(b []byte) ([]byte, uint64) {
_ = b[7]
x := uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
return b[8:], x
}
func consumeUint32(b []byte) ([]byte, uint32) {
_ = b[3]
x := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
return b[4:], x
}
// New returns a new hash.Hash computing the SM3 checksum. The Hash
// also implements encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler to marshal and unmarshal the internal
// state of the hash.
func New() hash.Hash {
d := new(digest)
d.Reset()
return d
}
// Sum appends the current hash to in and returns the resulting slice.
// It does not change the underlying hash state.
func (d *digest) Sum(in []byte) []byte {
// Make a copy of d so that caller can keep writing and summing.
d0 := *d
hash := d0.checkSum()
return append(in, hash[:]...)
}
func (d *digest) checkSum() [Size]byte {
len := d.len
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
var tmp [64 + 8]byte // padding + length buffer
tmp[0] = 0x80
var t uint64
if len%64 < 56 {
t = 56 - len%64
} else {
t = 64 + 56 - len%64
}
// Length in bits.
len <<= 3
padlen := tmp[:t+8]
binary.BigEndian.PutUint64(padlen[t:], len)
d.Write(padlen)
if d.nx != 0 {
panic("d.nx != 0")
}
var digest [Size]byte
binary.BigEndian.PutUint32(digest[0:], d.h[0])
binary.BigEndian.PutUint32(digest[4:], d.h[1])
binary.BigEndian.PutUint32(digest[8:], d.h[2])
binary.BigEndian.PutUint32(digest[12:], d.h[3])
binary.BigEndian.PutUint32(digest[16:], d.h[4])
binary.BigEndian.PutUint32(digest[20:], d.h[5])
binary.BigEndian.PutUint32(digest[24:], d.h[6])
binary.BigEndian.PutUint32(digest[28:], d.h[7])
return digest
}
func (d *digest) Write(p []byte) (nn int, err error) {
nn = len(p)
d.len += uint64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx:], p)
d.nx += n
if d.nx == chunk {
block(d, d.x[:])
d.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
block(d, p[:n])
p = p[n:]
}
if len(p) > 0 {
d.nx = copy(d.x[:], p)
}
return
}
func (d *digest) Size() int {
return Size
}
func (d *digest) BlockSize() int { return BlockSize }
// Reset resets the Hash to its initial state.
func (d *digest) Reset() {
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
d.nx = 0
d.len = 0
}
// Sum returns the SM3 checksum of the data.
func Sum(data []byte) [Size]byte {
var d digest
d.Reset()
d.Write(data)
return d.checkSum()
}
// Kdf key derivation function using SM3, compliance with GB/T 32918.4-2016 5.4.3.
func (baseMD *digest) Kdf(z []byte, keyLen int) []byte {
limit := uint64(keyLen+Size-1) / uint64(Size)
if limit >= uint64(1<<32)-1 {
panic("sm3: key length too long")
}
baseMD.Reset()
baseMD.Write(z)
return kdf(baseMD, keyLen, int(limit))
}
func kdfGeneric(baseMD *digest, keyLen int, limit int) []byte {
var countBytes [4]byte
var ct uint32 = 1
k := make([]byte, keyLen)
for i := 0; i < limit; i++ {
binary.BigEndian.PutUint32(countBytes[:], ct)
md := *baseMD
md.Write(countBytes[:])
h := md.checkSum()
copy(k[i*Size:], h[:])
ct++
}
return k
}
func Kdf(z []byte, keyLen int) []byte {
baseMD := new(digest)
return baseMD.Kdf(z, keyLen)
}