mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-22 02:06:18 +08:00
1078 lines
32 KiB
Go
1078 lines
32 KiB
Go
package smx509
|
||
|
||
import (
|
||
"bytes"
|
||
"crypto"
|
||
"crypto/x509"
|
||
"crypto/x509/pkix"
|
||
"errors"
|
||
"fmt"
|
||
"net"
|
||
"net/url"
|
||
"reflect"
|
||
"runtime"
|
||
"strings"
|
||
"time"
|
||
"unicode/utf8"
|
||
)
|
||
|
||
const (
|
||
NotAuthorizedToSign = x509.NotAuthorizedToSign
|
||
Expired = x509.Expired
|
||
CANotAuthorizedForThisName = x509.CANotAuthorizedForThisName
|
||
TooManyIntermediates = x509.TooManyIntermediates
|
||
IncompatibleUsage = x509.IncompatibleUsage
|
||
NameMismatch = x509.NameMismatch
|
||
NameConstraintsWithoutSANs = x509.NameConstraintsWithoutSANs
|
||
UnconstrainedName = x509.UnconstrainedName
|
||
TooManyConstraints = x509.TooManyConstraints
|
||
CANotAuthorizedForExtKeyUsage = x509.CANotAuthorizedForExtKeyUsage
|
||
)
|
||
|
||
type CertificateInvalidError = x509.CertificateInvalidError
|
||
|
||
// UnknownAuthorityError results when the certificate issuer is unknown
|
||
type UnknownAuthorityError struct {
|
||
Cert *Certificate
|
||
// hintErr contains an error that may be helpful in determining why an
|
||
// authority wasn't found.
|
||
hintErr error
|
||
// hintCert contains a possible authority certificate that was rejected
|
||
// because of the error in hintErr.
|
||
hintCert *Certificate
|
||
}
|
||
|
||
func (e UnknownAuthorityError) Error() string {
|
||
s := "x509: certificate signed by unknown authority"
|
||
if e.hintErr != nil {
|
||
certName := e.hintCert.Subject.CommonName
|
||
if len(certName) == 0 {
|
||
if len(e.hintCert.Subject.Organization) > 0 {
|
||
certName = e.hintCert.Subject.Organization[0]
|
||
} else {
|
||
certName = "serial:" + e.hintCert.SerialNumber.String()
|
||
}
|
||
}
|
||
s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
|
||
}
|
||
return s
|
||
}
|
||
|
||
// errNotParsed is returned when a certificate without ASN.1 contents is
|
||
// verified. Platform-specific verification needs the ASN.1 contents.
|
||
var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
|
||
|
||
// VerifyOptions contains parameters for Certificate.Verify.
|
||
type VerifyOptions struct {
|
||
// DNSName, if set, is checked against the leaf certificate with
|
||
// Certificate.VerifyHostname or the platform verifier.
|
||
DNSName string
|
||
|
||
// Intermediates is an optional pool of certificates that are not trust
|
||
// anchors, but can be used to form a chain from the leaf certificate to a
|
||
// root certificate.
|
||
Intermediates *CertPool
|
||
// Roots is the set of trusted root certificates the leaf certificate needs
|
||
// to chain up to. If nil, the system roots or the platform verifier are used.
|
||
Roots *CertPool
|
||
|
||
// CurrentTime is used to check the validity of all certificates in the
|
||
// chain. If zero, the current time is used.
|
||
CurrentTime time.Time
|
||
|
||
// KeyUsages specifies which Extended Key Usage values are acceptable. A
|
||
// chain is accepted if it allows any of the listed values. An empty list
|
||
// means ExtKeyUsageServerAuth. To accept any key usage, include ExtKeyUsageAny.
|
||
KeyUsages []ExtKeyUsage
|
||
|
||
// MaxConstraintComparisions is the maximum number of comparisons to
|
||
// perform when checking a given certificate's name constraints. If
|
||
// zero, a sensible default is used. This limit prevents pathological
|
||
// certificates from consuming excessive amounts of CPU time when
|
||
// validating. It does not apply to the platform verifier.
|
||
MaxConstraintComparisions int
|
||
}
|
||
|
||
const (
|
||
leafCertificate = iota
|
||
intermediateCertificate
|
||
rootCertificate
|
||
)
|
||
|
||
// rfc2821Mailbox represents a “mailbox” (which is an email address to most
|
||
// people) by breaking it into the “local” (i.e. before the '@') and “domain”
|
||
// parts.
|
||
type rfc2821Mailbox struct {
|
||
local, domain string
|
||
}
|
||
|
||
// parseRFC2821Mailbox parses an email address into local and domain parts,
|
||
// based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280,
|
||
// Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The
|
||
// format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”.
|
||
func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
|
||
localPartBytes := make([]byte, 0, len(in)/2)
|
||
|
||
if in[0] == '"' {
|
||
// Quoted-string = DQUOTE *qcontent DQUOTE
|
||
// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
|
||
// qcontent = qtext / quoted-pair
|
||
// qtext = non-whitespace-control /
|
||
// %d33 / %d35-91 / %d93-126
|
||
// quoted-pair = ("\" text) / obs-qp
|
||
// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
|
||
//
|
||
// (Names beginning with “obs-” are the obsolete syntax from RFC 2822,
|
||
// Section 4. Since it has been 16 years, we no longer accept that.)
|
||
in = in[1:]
|
||
QuotedString:
|
||
for {
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
c := in[0]
|
||
in = in[1:]
|
||
|
||
switch {
|
||
case c == '"':
|
||
break QuotedString
|
||
|
||
case c == '\\':
|
||
// quoted-pair
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
if in[0] == 11 ||
|
||
in[0] == 12 ||
|
||
(1 <= in[0] && in[0] <= 9) ||
|
||
(14 <= in[0] && in[0] <= 127) {
|
||
localPartBytes = append(localPartBytes, in[0])
|
||
in = in[1:]
|
||
} else {
|
||
return mailbox, false
|
||
}
|
||
|
||
case c == 11 ||
|
||
c == 12 ||
|
||
// Space (char 32) is not allowed based on the
|
||
// BNF, but RFC 3696 gives an example that
|
||
// assumes that it is. Several “verified”
|
||
// errata continue to argue about this point.
|
||
// We choose to accept it.
|
||
c == 32 ||
|
||
c == 33 ||
|
||
c == 127 ||
|
||
(1 <= c && c <= 8) ||
|
||
(14 <= c && c <= 31) ||
|
||
(35 <= c && c <= 91) ||
|
||
(93 <= c && c <= 126):
|
||
// qtext
|
||
localPartBytes = append(localPartBytes, c)
|
||
|
||
default:
|
||
return mailbox, false
|
||
}
|
||
}
|
||
} else {
|
||
// Atom ("." Atom)*
|
||
NextChar:
|
||
for len(in) > 0 {
|
||
// atext from RFC 2822, Section 3.2.4
|
||
c := in[0]
|
||
|
||
switch {
|
||
case c == '\\':
|
||
// Examples given in RFC 3696 suggest that
|
||
// escaped characters can appear outside of a
|
||
// quoted string. Several “verified” errata
|
||
// continue to argue the point. We choose to
|
||
// accept it.
|
||
in = in[1:]
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
fallthrough
|
||
|
||
case ('0' <= c && c <= '9') ||
|
||
('a' <= c && c <= 'z') ||
|
||
('A' <= c && c <= 'Z') ||
|
||
c == '!' || c == '#' || c == '$' || c == '%' ||
|
||
c == '&' || c == '\'' || c == '*' || c == '+' ||
|
||
c == '-' || c == '/' || c == '=' || c == '?' ||
|
||
c == '^' || c == '_' || c == '`' || c == '{' ||
|
||
c == '|' || c == '}' || c == '~' || c == '.':
|
||
localPartBytes = append(localPartBytes, in[0])
|
||
in = in[1:]
|
||
|
||
default:
|
||
break NextChar
|
||
}
|
||
}
|
||
|
||
if len(localPartBytes) == 0 {
|
||
return mailbox, false
|
||
}
|
||
|
||
// From RFC 3696, Section 3:
|
||
// “period (".") may also appear, but may not be used to start
|
||
// or end the local part, nor may two or more consecutive
|
||
// periods appear.”
|
||
twoDots := []byte{'.', '.'}
|
||
if localPartBytes[0] == '.' ||
|
||
localPartBytes[len(localPartBytes)-1] == '.' ||
|
||
bytes.Contains(localPartBytes, twoDots) {
|
||
return mailbox, false
|
||
}
|
||
}
|
||
|
||
if len(in) == 0 || in[0] != '@' {
|
||
return mailbox, false
|
||
}
|
||
in = in[1:]
|
||
|
||
// The RFC species a format for domains, but that's known to be
|
||
// violated in practice so we accept that anything after an '@' is the
|
||
// domain part.
|
||
if _, ok := domainToReverseLabels(in); !ok {
|
||
return mailbox, false
|
||
}
|
||
|
||
mailbox.local = string(localPartBytes)
|
||
mailbox.domain = in
|
||
return mailbox, true
|
||
}
|
||
|
||
// domainToReverseLabels converts a textual domain name like foo.example.com to
|
||
// the list of labels in reverse order, e.g. ["com", "example", "foo"].
|
||
func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
|
||
for len(domain) > 0 {
|
||
if i := strings.LastIndexByte(domain, '.'); i == -1 {
|
||
reverseLabels = append(reverseLabels, domain)
|
||
domain = ""
|
||
} else {
|
||
reverseLabels = append(reverseLabels, domain[i+1:])
|
||
domain = domain[:i]
|
||
if i == 0 { // domain == ""
|
||
// domain is prefixed with an empty label, append an empty
|
||
// string to reverseLabels to indicate this.
|
||
reverseLabels = append(reverseLabels, "")
|
||
}
|
||
}
|
||
}
|
||
|
||
if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
|
||
// An empty label at the end indicates an absolute value.
|
||
return nil, false
|
||
}
|
||
|
||
for _, label := range reverseLabels {
|
||
if len(label) == 0 {
|
||
// Empty labels are otherwise invalid.
|
||
return nil, false
|
||
}
|
||
|
||
for _, c := range label {
|
||
if c < 33 || c > 126 {
|
||
// Invalid character.
|
||
return nil, false
|
||
}
|
||
}
|
||
}
|
||
|
||
return reverseLabels, true
|
||
}
|
||
|
||
func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
|
||
// If the constraint contains an @, then it specifies an exact mailbox
|
||
// name.
|
||
if strings.Contains(constraint, "@") {
|
||
constraintMailbox, ok := parseRFC2821Mailbox(constraint)
|
||
if !ok {
|
||
return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
|
||
}
|
||
return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
|
||
}
|
||
|
||
// Otherwise the constraint is like a DNS constraint of the domain part
|
||
// of the mailbox.
|
||
return matchDomainConstraint(mailbox.domain, constraint)
|
||
}
|
||
|
||
func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
|
||
// From RFC 5280, Section 4.2.1.10:
|
||
// “a uniformResourceIdentifier that does not include an authority
|
||
// component with a host name specified as a fully qualified domain
|
||
// name (e.g., if the URI either does not include an authority
|
||
// component or includes an authority component in which the host name
|
||
// is specified as an IP address), then the application MUST reject the
|
||
// certificate.”
|
||
|
||
host := uri.Host
|
||
if len(host) == 0 {
|
||
return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
|
||
}
|
||
|
||
if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
|
||
var err error
|
||
host, _, err = net.SplitHostPort(uri.Host)
|
||
if err != nil {
|
||
return false, err
|
||
}
|
||
}
|
||
|
||
if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
|
||
net.ParseIP(host) != nil {
|
||
return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
|
||
}
|
||
|
||
return matchDomainConstraint(host, constraint)
|
||
}
|
||
|
||
func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
|
||
if len(ip) != len(constraint.IP) {
|
||
return false, nil
|
||
}
|
||
|
||
for i := range ip {
|
||
if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
|
||
return false, nil
|
||
}
|
||
}
|
||
|
||
return true, nil
|
||
}
|
||
|
||
func matchDomainConstraint(domain, constraint string) (bool, error) {
|
||
// The meaning of zero length constraints is not specified, but this
|
||
// code follows NSS and accepts them as matching everything.
|
||
if len(constraint) == 0 {
|
||
return true, nil
|
||
}
|
||
|
||
domainLabels, ok := domainToReverseLabels(domain)
|
||
if !ok {
|
||
return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
|
||
}
|
||
|
||
// RFC 5280 says that a leading period in a domain name means that at
|
||
// least one label must be prepended, but only for URI and email
|
||
// constraints, not DNS constraints. The code also supports that
|
||
// behaviour for DNS constraints.
|
||
|
||
mustHaveSubdomains := false
|
||
if constraint[0] == '.' {
|
||
mustHaveSubdomains = true
|
||
constraint = constraint[1:]
|
||
}
|
||
|
||
constraintLabels, ok := domainToReverseLabels(constraint)
|
||
if !ok {
|
||
return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
|
||
}
|
||
|
||
if len(domainLabels) < len(constraintLabels) ||
|
||
(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
|
||
return false, nil
|
||
}
|
||
|
||
for i, constraintLabel := range constraintLabels {
|
||
if !strings.EqualFold(constraintLabel, domainLabels[i]) {
|
||
return false, nil
|
||
}
|
||
}
|
||
|
||
return true, nil
|
||
}
|
||
|
||
// checkNameConstraints checks that c permits a child certificate to claim the
|
||
// given name, of type nameType. The argument parsedName contains the parsed
|
||
// form of name, suitable for passing to the match function. The total number
|
||
// of comparisons is tracked in the given count and should not exceed the given
|
||
// limit.
|
||
func (c *Certificate) checkNameConstraints(count *int,
|
||
maxConstraintComparisons int,
|
||
nameType string,
|
||
name string,
|
||
parsedName any,
|
||
match func(parsedName, constraint any) (match bool, err error),
|
||
permitted, excluded any) error {
|
||
|
||
excludedValue := reflect.ValueOf(excluded)
|
||
|
||
*count += excludedValue.Len()
|
||
if *count > maxConstraintComparisons {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: TooManyConstraints, Detail: ""}
|
||
}
|
||
|
||
for i := 0; i < excludedValue.Len(); i++ {
|
||
constraint := excludedValue.Index(i).Interface()
|
||
match, err := match(parsedName, constraint)
|
||
if err != nil {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: err.Error()}
|
||
}
|
||
|
||
if match {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
|
||
}
|
||
}
|
||
|
||
permittedValue := reflect.ValueOf(permitted)
|
||
|
||
*count += permittedValue.Len()
|
||
if *count > maxConstraintComparisons {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: TooManyConstraints, Detail: ""}
|
||
}
|
||
|
||
ok := true
|
||
for i := 0; i < permittedValue.Len(); i++ {
|
||
constraint := permittedValue.Index(i).Interface()
|
||
|
||
var err error
|
||
if ok, err = match(parsedName, constraint); err != nil {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: err.Error()}
|
||
}
|
||
|
||
if ok {
|
||
break
|
||
}
|
||
}
|
||
|
||
if !ok {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: CANotAuthorizedForThisName, Detail: fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
|
||
// isValid performs validity checks on c given that it is a candidate to append
|
||
// to the chain in currentChain.
|
||
func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
|
||
if len(c.UnhandledCriticalExtensions) > 0 {
|
||
return x509.UnhandledCriticalExtension{}
|
||
}
|
||
|
||
if len(currentChain) > 0 {
|
||
child := currentChain[len(currentChain)-1]
|
||
if !bytes.Equal(child.RawIssuer, c.RawSubject) {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: NameMismatch, Detail: ""}
|
||
}
|
||
}
|
||
|
||
now := opts.CurrentTime
|
||
if now.IsZero() {
|
||
now = time.Now()
|
||
}
|
||
if now.Before(c.NotBefore) {
|
||
return CertificateInvalidError{
|
||
Cert: c.asX509(),
|
||
Reason: Expired,
|
||
Detail: fmt.Sprintf("current time %s is before %s", now.Format(time.RFC3339), c.NotBefore.Format(time.RFC3339)),
|
||
}
|
||
} else if now.After(c.NotAfter) {
|
||
return CertificateInvalidError{
|
||
Cert: c.asX509(),
|
||
Reason: Expired,
|
||
Detail: fmt.Sprintf("current time %s is after %s", now.Format(time.RFC3339), c.NotAfter.Format(time.RFC3339)),
|
||
}
|
||
}
|
||
|
||
maxConstraintComparisons := opts.MaxConstraintComparisions
|
||
if maxConstraintComparisons == 0 {
|
||
maxConstraintComparisons = 250000
|
||
}
|
||
comparisonCount := 0
|
||
|
||
if certType == intermediateCertificate || certType == rootCertificate {
|
||
if len(currentChain) == 0 {
|
||
return errors.New("x509: internal error: empty chain when appending CA cert")
|
||
}
|
||
}
|
||
|
||
if (certType == intermediateCertificate || certType == rootCertificate) &&
|
||
c.hasNameConstraints() {
|
||
toCheck := []*Certificate{}
|
||
for _, c := range currentChain {
|
||
if c.hasSANExtension() {
|
||
toCheck = append(toCheck, c)
|
||
}
|
||
}
|
||
for _, sanCert := range toCheck {
|
||
err := forEachSAN(sanCert.getSANExtension(), func(tag int, data []byte) error {
|
||
switch tag {
|
||
case nameTypeEmail:
|
||
name := string(data)
|
||
mailbox, ok := parseRFC2821Mailbox(name)
|
||
if !ok {
|
||
return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
|
||
func(parsedName, constraint any) (bool, error) {
|
||
return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
|
||
}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
|
||
return err
|
||
}
|
||
|
||
case nameTypeDNS:
|
||
name := string(data)
|
||
if _, ok := domainToReverseLabels(name); !ok {
|
||
return fmt.Errorf("x509: cannot parse dnsName %q", name)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
|
||
func(parsedName, constraint any) (bool, error) {
|
||
return matchDomainConstraint(parsedName.(string), constraint.(string))
|
||
}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
|
||
return err
|
||
}
|
||
|
||
case nameTypeURI:
|
||
name := string(data)
|
||
uri, err := url.Parse(name)
|
||
if err != nil {
|
||
return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
|
||
func(parsedName, constraint any) (bool, error) {
|
||
return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
|
||
}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
|
||
return err
|
||
}
|
||
|
||
case nameTypeIP:
|
||
ip := net.IP(data)
|
||
if l := len(ip); l != net.IPv4len && l != net.IPv6len {
|
||
return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
|
||
func(parsedName, constraint any) (bool, error) {
|
||
return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
|
||
}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
|
||
return err
|
||
}
|
||
|
||
default:
|
||
// Unknown SAN types are ignored.
|
||
}
|
||
|
||
return nil
|
||
})
|
||
|
||
if err != nil {
|
||
return err
|
||
}
|
||
}
|
||
}
|
||
|
||
// KeyUsage status flags are ignored. From Engineering Security, Peter
|
||
// Gutmann: A European government CA marked its signing certificates as
|
||
// being valid for encryption only, but no-one noticed. Another
|
||
// European CA marked its signature keys as not being valid for
|
||
// signatures. A different CA marked its own trusted root certificate
|
||
// as being invalid for certificate signing. Another national CA
|
||
// distributed a certificate to be used to encrypt data for the
|
||
// country’s tax authority that was marked as only being usable for
|
||
// digital signatures but not for encryption. Yet another CA reversed
|
||
// the order of the bit flags in the keyUsage due to confusion over
|
||
// encoding endianness, essentially setting a random keyUsage in
|
||
// certificates that it issued. Another CA created a self-invalidating
|
||
// certificate by adding a certificate policy statement stipulating
|
||
// that the certificate had to be used strictly as specified in the
|
||
// keyUsage, and a keyUsage containing a flag indicating that the RSA
|
||
// encryption key could only be used for Diffie-Hellman key agreement.
|
||
|
||
if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: NotAuthorizedToSign, Detail: ""}
|
||
}
|
||
|
||
if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
|
||
numIntermediates := len(currentChain) - 1
|
||
if numIntermediates > c.MaxPathLen {
|
||
return CertificateInvalidError{Cert: c.asX509(), Reason: TooManyIntermediates, Detail: ""}
|
||
}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
|
||
// Verify attempts to verify c by building one or more chains from c to a
|
||
// certificate in opts.Roots, using certificates in opts.Intermediates if
|
||
// needed. If successful, it returns one or more chains where the first
|
||
// element of the chain is c and the last element is from opts.Roots.
|
||
//
|
||
// If opts.Roots is nil, the platform verifier might be used, and
|
||
// verification details might differ from what is described below. If system
|
||
// roots are unavailable the returned error will be of type SystemRootsError.
|
||
//
|
||
// Name constraints in the intermediates will be applied to all names claimed
|
||
// in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
|
||
// example.com if an intermediate doesn't permit it, even if example.com is not
|
||
// the name being validated. Note that DirectoryName constraints are not
|
||
// supported.
|
||
//
|
||
// Name constraint validation follows the rules from RFC 5280, with the
|
||
// addition that DNS name constraints may use the leading period format
|
||
// defined for emails and URIs. When a constraint has a leading period
|
||
// it indicates that at least one additional label must be prepended to
|
||
// the constrained name to be considered valid.
|
||
//
|
||
// Extended Key Usage values are enforced nested down a chain, so an intermediate
|
||
// or root that enumerates EKUs prevents a leaf from asserting an EKU not in that
|
||
// list. (While this is not specified, it is common practice in order to limit
|
||
// the types of certificates a CA can issue.)
|
||
//
|
||
// Certificates other than c in the returned chains should not be modified.
|
||
//
|
||
// WARNING: this function doesn't do any revocation checking.
|
||
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
|
||
// Platform-specific verification needs the ASN.1 contents so
|
||
// this makes the behavior consistent across platforms.
|
||
if len(c.Raw) == 0 {
|
||
return nil, errNotParsed
|
||
}
|
||
for i := 0; i < opts.Intermediates.len(); i++ {
|
||
c, _, err := opts.Intermediates.cert(i)
|
||
if err != nil {
|
||
return nil, fmt.Errorf("x509: error fetching intermediate: %w", err)
|
||
}
|
||
if len(c.Raw) == 0 {
|
||
return nil, errNotParsed
|
||
}
|
||
}
|
||
|
||
// Use platform verifiers, where available, if Roots is from SystemCertPool.
|
||
if runtime.GOOS == "windows" {
|
||
// Don't use the system verifier if the system pool was replaced with a non-system pool,
|
||
// i.e. if SetFallbackRoots was called with x509usefallbackroots=1.
|
||
systemPool := systemRootsPool()
|
||
if opts.Roots == nil && (systemPool == nil || systemPool.systemPool) {
|
||
return c.systemVerify(&opts)
|
||
}
|
||
if opts.Roots != nil && opts.Roots.systemPool {
|
||
platformChains, err := c.systemVerify(&opts)
|
||
// If the platform verifier succeeded, or there are no additional
|
||
// roots, return the platform verifier result. Otherwise, continue
|
||
// with the Go verifier.
|
||
if err == nil || opts.Roots.len() == 0 {
|
||
return platformChains, err
|
||
}
|
||
}
|
||
}
|
||
|
||
if opts.Roots == nil {
|
||
opts.Roots = systemRootsPool()
|
||
if opts.Roots == nil {
|
||
return nil, x509.SystemRootsError{Err: systemRootsErr}
|
||
}
|
||
}
|
||
|
||
err = c.isValid(leafCertificate, nil, &opts)
|
||
if err != nil {
|
||
return
|
||
}
|
||
|
||
if len(opts.DNSName) > 0 {
|
||
err = c.VerifyHostname(opts.DNSName)
|
||
if err != nil {
|
||
return
|
||
}
|
||
}
|
||
|
||
var candidateChains [][]*Certificate
|
||
if opts.Roots.contains(c) {
|
||
candidateChains = [][]*Certificate{{c}}
|
||
} else {
|
||
candidateChains, err = c.buildChains([]*Certificate{c}, nil, &opts)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
}
|
||
|
||
if len(opts.KeyUsages) == 0 {
|
||
opts.KeyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
|
||
}
|
||
|
||
for _, eku := range opts.KeyUsages {
|
||
if eku == ExtKeyUsageAny {
|
||
// If any key usage is acceptable, no need to check the chain for
|
||
// key usages.
|
||
return candidateChains, nil
|
||
}
|
||
}
|
||
|
||
chains = make([][]*Certificate, 0, len(candidateChains))
|
||
for _, candidate := range candidateChains {
|
||
if checkChainForKeyUsage(candidate, opts.KeyUsages) {
|
||
chains = append(chains, candidate)
|
||
}
|
||
}
|
||
|
||
if len(chains) == 0 {
|
||
return nil, CertificateInvalidError{Cert: c.asX509(), Reason: IncompatibleUsage, Detail: ""}
|
||
}
|
||
|
||
return chains, nil
|
||
}
|
||
|
||
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
|
||
n := make([]*Certificate, len(chain)+1)
|
||
copy(n, chain)
|
||
n[len(chain)] = cert
|
||
return n
|
||
}
|
||
|
||
// alreadyInChain checks whether a candidate certificate is present in a chain.
|
||
// Rather than doing a direct byte for byte equivalency check, we check if the
|
||
// subject, public key, and SAN, if present, are equal. This prevents loops that
|
||
// are created by mutual cross-signatures, or other cross-signature bridge
|
||
// oddities.
|
||
func alreadyInChain(candidate *Certificate, chain []*Certificate) bool {
|
||
type pubKeyEqual interface {
|
||
Equal(crypto.PublicKey) bool
|
||
}
|
||
|
||
var candidateSAN *pkix.Extension
|
||
for _, ext := range candidate.Extensions {
|
||
if ext.Id.Equal(oidExtensionSubjectAltName) {
|
||
candidateSAN = &ext
|
||
break
|
||
}
|
||
}
|
||
|
||
for _, cert := range chain {
|
||
if !bytes.Equal(candidate.RawSubject, cert.RawSubject) {
|
||
continue
|
||
}
|
||
if !candidate.PublicKey.(pubKeyEqual).Equal(cert.PublicKey) {
|
||
continue
|
||
}
|
||
var certSAN *pkix.Extension
|
||
for _, ext := range cert.Extensions {
|
||
if ext.Id.Equal(oidExtensionSubjectAltName) {
|
||
certSAN = &ext
|
||
break
|
||
}
|
||
}
|
||
if candidateSAN == nil && certSAN == nil {
|
||
return true
|
||
} else if candidateSAN == nil || certSAN == nil {
|
||
return false
|
||
}
|
||
if bytes.Equal(candidateSAN.Value, certSAN.Value) {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// maxChainSignatureChecks is the maximum number of CheckSignatureFrom calls
|
||
// that an invocation of buildChains will (transitively) make. Most chains are
|
||
// less than 15 certificates long, so this leaves space for multiple chains and
|
||
// for failed checks due to different intermediates having the same Subject.
|
||
const maxChainSignatureChecks = 100
|
||
|
||
func (c *Certificate) buildChains(currentChain []*Certificate, sigChecks *int, opts *VerifyOptions) (chains [][]*Certificate, err error) {
|
||
var (
|
||
hintErr error
|
||
hintCert *Certificate
|
||
)
|
||
|
||
considerCandidate := func(certType int, candidate potentialParent) {
|
||
if candidate.cert.PublicKey == nil ||alreadyInChain(candidate.cert, currentChain) {
|
||
return
|
||
}
|
||
|
||
if sigChecks == nil {
|
||
sigChecks = new(int)
|
||
}
|
||
*sigChecks++
|
||
if *sigChecks > maxChainSignatureChecks {
|
||
err = errors.New("x509: signature check attempts limit reached while verifying certificate chain")
|
||
return
|
||
}
|
||
|
||
if err := c.CheckSignatureFrom(candidate.cert); err != nil {
|
||
if hintErr == nil {
|
||
hintErr = err
|
||
hintCert = candidate.cert
|
||
}
|
||
return
|
||
}
|
||
|
||
err = candidate.cert.isValid(certType, currentChain, opts)
|
||
if err != nil {
|
||
if hintErr == nil {
|
||
hintErr = err
|
||
hintCert = candidate.cert
|
||
}
|
||
return
|
||
}
|
||
|
||
if candidate.constraint != nil {
|
||
if err := candidate.constraint(currentChain); err != nil {
|
||
if hintErr == nil {
|
||
hintErr = err
|
||
hintCert = candidate.cert
|
||
}
|
||
return
|
||
}
|
||
}
|
||
|
||
switch certType {
|
||
case rootCertificate:
|
||
chains = append(chains, appendToFreshChain(currentChain, candidate.cert))
|
||
case intermediateCertificate:
|
||
var childChains [][]*Certificate
|
||
childChains, err = candidate.cert.buildChains(appendToFreshChain(currentChain, candidate.cert), sigChecks, opts)
|
||
chains = append(chains, childChains...)
|
||
}
|
||
}
|
||
|
||
for _, root := range opts.Roots.findPotentialParents(c) {
|
||
considerCandidate(rootCertificate, root)
|
||
}
|
||
for _, intermediate := range opts.Intermediates.findPotentialParents(c) {
|
||
considerCandidate(intermediateCertificate, intermediate)
|
||
}
|
||
|
||
if len(chains) > 0 {
|
||
err = nil
|
||
}
|
||
if len(chains) == 0 && err == nil {
|
||
err = UnknownAuthorityError{c, hintErr, hintCert}
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
func validHostnamePattern(host string) bool { return validHostname(host, true) }
|
||
func validHostnameInput(host string) bool { return validHostname(host, false) }
|
||
|
||
// validHostname reports whether host is a valid hostname that can be matched or
|
||
// matched against according to RFC 6125 2.2, with some leniency to accommodate
|
||
// legacy values.
|
||
func validHostname(host string, isPattern bool) bool {
|
||
if !isPattern {
|
||
host = strings.TrimSuffix(host, ".")
|
||
}
|
||
|
||
if len(host) == 0 {
|
||
return false
|
||
}
|
||
if host == "*" {
|
||
// Bare wildcards are not allowed, they are not valid DNS names,
|
||
// nor are they allowed per RFC 6125.
|
||
return false
|
||
}
|
||
|
||
for i, part := range strings.Split(host, ".") {
|
||
if part == "" {
|
||
// Empty label.
|
||
return false
|
||
}
|
||
if isPattern && i == 0 && part == "*" {
|
||
// Only allow full left-most wildcards, as those are the only ones
|
||
// we match, and matching literal '*' characters is probably never
|
||
// the expected behavior.
|
||
continue
|
||
}
|
||
for j, c := range part {
|
||
if 'a' <= c && c <= 'z' {
|
||
continue
|
||
}
|
||
if '0' <= c && c <= '9' {
|
||
continue
|
||
}
|
||
if 'A' <= c && c <= 'Z' {
|
||
continue
|
||
}
|
||
if c == '-' && j != 0 {
|
||
continue
|
||
}
|
||
if c == '_' {
|
||
// Not a valid character in hostnames, but commonly
|
||
// found in deployments outside the WebPKI.
|
||
continue
|
||
}
|
||
return false
|
||
}
|
||
}
|
||
|
||
return true
|
||
}
|
||
|
||
func matchExactly(hostA, hostB string) bool {
|
||
if hostA == "" || hostA == "." || hostB == "" || hostB == "." {
|
||
return false
|
||
}
|
||
return toLowerCaseASCII(hostA) == toLowerCaseASCII(hostB)
|
||
}
|
||
|
||
func matchHostnames(pattern, host string) bool {
|
||
pattern = toLowerCaseASCII(pattern)
|
||
host = toLowerCaseASCII(strings.TrimSuffix(host, "."))
|
||
|
||
if len(pattern) == 0 || len(host) == 0 {
|
||
return false
|
||
}
|
||
|
||
patternParts := strings.Split(pattern, ".")
|
||
hostParts := strings.Split(host, ".")
|
||
|
||
if len(patternParts) != len(hostParts) {
|
||
return false
|
||
}
|
||
|
||
for i, patternPart := range patternParts {
|
||
if i == 0 && patternPart == "*" {
|
||
continue
|
||
}
|
||
if patternPart != hostParts[i] {
|
||
return false
|
||
}
|
||
}
|
||
|
||
return true
|
||
}
|
||
|
||
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
|
||
// an explicitly ASCII function to avoid any sharp corners resulting from
|
||
// performing Unicode operations on DNS labels.
|
||
func toLowerCaseASCII(in string) string {
|
||
// If the string is already lower-case then there's nothing to do.
|
||
isAlreadyLowerCase := true
|
||
for _, c := range in {
|
||
if c == utf8.RuneError {
|
||
// If we get a UTF-8 error then there might be
|
||
// upper-case ASCII bytes in the invalid sequence.
|
||
isAlreadyLowerCase = false
|
||
break
|
||
}
|
||
if 'A' <= c && c <= 'Z' {
|
||
isAlreadyLowerCase = false
|
||
break
|
||
}
|
||
}
|
||
|
||
if isAlreadyLowerCase {
|
||
return in
|
||
}
|
||
|
||
out := []byte(in)
|
||
for i, c := range out {
|
||
if 'A' <= c && c <= 'Z' {
|
||
out[i] += 'a' - 'A'
|
||
}
|
||
}
|
||
return string(out)
|
||
}
|
||
|
||
// VerifyHostname returns nil if c is a valid certificate for the named host.
|
||
// Otherwise it returns an error describing the mismatch.
|
||
//
|
||
// IP addresses can be optionally enclosed in square brackets and are checked
|
||
// against the IPAddresses field. Other names are checked case insensitively
|
||
// against the DNSNames field. If the names are valid hostnames, the certificate
|
||
// fields can have a wildcard as the complete left-most label (e.g. *.example.com).
|
||
//
|
||
// Note that the legacy Common Name field is ignored.
|
||
func (c *Certificate) VerifyHostname(h string) error {
|
||
// IP addresses may be written in [ ].
|
||
candidateIP := h
|
||
if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
|
||
candidateIP = h[1 : len(h)-1]
|
||
}
|
||
if ip := net.ParseIP(candidateIP); ip != nil {
|
||
// We only match IP addresses against IP SANs.
|
||
// See RFC 6125, Appendix B.2.
|
||
for _, candidate := range c.IPAddresses {
|
||
if ip.Equal(candidate) {
|
||
return nil
|
||
}
|
||
}
|
||
return x509.HostnameError{Certificate: c.asX509(), Host: candidateIP}
|
||
}
|
||
|
||
candidateName := toLowerCaseASCII(h) // Save allocations inside the loop.
|
||
validCandidateName := validHostnameInput(candidateName)
|
||
|
||
for _, match := range c.DNSNames {
|
||
// Ideally, we'd only match valid hostnames according to RFC 6125 like
|
||
// browsers (more or less) do, but in practice Go is used in a wider
|
||
// array of contexts and can't even assume DNS resolution. Instead,
|
||
// always allow perfect matches, and only apply wildcard and trailing
|
||
// dot processing to valid hostnames.
|
||
if validCandidateName && validHostnamePattern(match) {
|
||
if matchHostnames(match, candidateName) {
|
||
return nil
|
||
}
|
||
} else {
|
||
if matchExactly(match, candidateName) {
|
||
return nil
|
||
}
|
||
}
|
||
}
|
||
|
||
return x509.HostnameError{Certificate: c.asX509(), Host: h}
|
||
}
|
||
|
||
func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
|
||
usages := make([]ExtKeyUsage, len(keyUsages))
|
||
copy(usages, keyUsages)
|
||
|
||
if len(chain) == 0 {
|
||
return false
|
||
}
|
||
|
||
usagesRemaining := len(usages)
|
||
|
||
// We walk down the list and cross out any usages that aren't supported
|
||
// by each certificate. If we cross out all the usages, then the chain
|
||
// is unacceptable.
|
||
|
||
NextCert:
|
||
for i := len(chain) - 1; i >= 0; i-- {
|
||
cert := chain[i]
|
||
if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
|
||
// The certificate doesn't have any extended key usage specified.
|
||
continue
|
||
}
|
||
|
||
for _, usage := range cert.ExtKeyUsage {
|
||
if usage == ExtKeyUsageAny {
|
||
// The certificate is explicitly good for any usage.
|
||
continue NextCert
|
||
}
|
||
}
|
||
|
||
const invalidUsage ExtKeyUsage = -1
|
||
|
||
NextRequestedUsage:
|
||
for i, requestedUsage := range usages {
|
||
if requestedUsage == invalidUsage {
|
||
continue
|
||
}
|
||
|
||
for _, usage := range cert.ExtKeyUsage {
|
||
if requestedUsage == usage {
|
||
continue NextRequestedUsage
|
||
}
|
||
}
|
||
|
||
usages[i] = invalidUsage
|
||
usagesRemaining--
|
||
if usagesRemaining == 0 {
|
||
return false
|
||
}
|
||
}
|
||
}
|
||
|
||
return true
|
||
}
|