gmsm/sm9/gfp.go
2022-06-07 17:13:23 +08:00

198 lines
3.7 KiB
Go

package sm9
import (
"crypto/sha256"
"encoding/binary"
"errors"
"fmt"
"math/big"
"golang.org/x/crypto/hkdf"
)
type gfP [4]uint64
var zero = newGFp(0)
var one = newGFp(1)
var two = newGFp(2)
func newGFp(x int64) (out *gfP) {
if x >= 0 {
out = &gfP{uint64(x)}
} else {
out = &gfP{uint64(-x)}
gfpNeg(out, out)
}
montEncode(out, out)
return out
}
func fromBigInt(x *big.Int) (out *gfP) {
out = &gfP{}
var a *big.Int
if x.Sign() >= 0 {
a = x
} else {
a = new(big.Int).Neg(x)
}
for i, v := range a.Bits() {
out[i] = uint64(v)
}
if x.Sign() < 0 {
gfpNeg(out, out)
}
if x.Sign() != 0 {
montEncode(out, out)
}
return out
}
// hashToBase implements hashing a message to an element of the field.
//
// L = ceil((256+128)/8)=48, ctr = 0, i = 1
func hashToBase(msg, dst []byte) *gfP {
var t [48]byte
info := []byte{'H', '2', 'C', byte(0), byte(1)}
r := hkdf.New(sha256.New, msg, dst, info)
if _, err := r.Read(t[:]); err != nil {
panic(err)
}
var x big.Int
v := x.SetBytes(t[:]).Mod(&x, p).Bytes()
v32 := [32]byte{}
for i := len(v) - 1; i >= 0; i-- {
v32[len(v)-1-i] = v[i]
}
u := &gfP{
binary.LittleEndian.Uint64(v32[0*8 : 1*8]),
binary.LittleEndian.Uint64(v32[1*8 : 2*8]),
binary.LittleEndian.Uint64(v32[2*8 : 3*8]),
binary.LittleEndian.Uint64(v32[3*8 : 4*8]),
}
montEncode(u, u)
return u
}
func (e *gfP) String() string {
return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0])
}
func (e *gfP) Set(f *gfP) {
e[0] = f[0]
e[1] = f[1]
e[2] = f[2]
e[3] = f[3]
}
func (e *gfP) exp(f *gfP, bits [4]uint64) {
sum, power := &gfP{}, &gfP{}
sum.Set(rN1)
power.Set(f)
for word := 0; word < 4; word++ {
for bit := uint(0); bit < 64; bit++ {
if (bits[word]>>bit)&1 == 1 {
gfpMul(sum, sum, power)
}
gfpMul(power, power, power)
}
}
gfpMul(sum, sum, r3)
e.Set(sum)
}
func (e *gfP) Invert(f *gfP) {
e.exp(f, pMinus2)
}
func (e *gfP) Sqrt(f *gfP) {
// Since p = 8k+5,
// Atkin algorithm
// https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.896.6057&rep=rep1&type=pdf
// https://eprint.iacr.org/2012/685.pdf
//
a1, b, i := &gfP{}, &gfP{}, &gfP{}
a1.exp(f, pMinus5Over8)
gfpMul(b, twoExpPMinus5Over8, a1) // b=ta1
gfpMul(a1, f, b) // a1=fb
gfpMul(i, two, a1) // i=2(fb)
gfpMul(i, i, b) // i=2(fb)b
gfpSub(i, i, one) // i=2(fb)b-1
gfpMul(i, a1, i) // i=(fb)(2(fb)b-1)
e.Set(i)
}
func (e *gfP) Marshal(out []byte) {
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
out[8*w+b] = byte(e[3-w] >> (56 - 8*b))
}
}
}
func (e *gfP) Unmarshal(in []byte) error {
// Unmarshal the bytes into little endian form
for w := uint(0); w < 4; w++ {
e[3-w] = 0
for b := uint(0); b < 8; b++ {
e[3-w] += uint64(in[8*w+b]) << (56 - 8*b)
}
}
// Ensure the point respects the curve modulus
for i := 3; i >= 0; i-- {
if e[i] < p2[i] {
return nil
}
if e[i] > p2[i] {
return errors.New("sm9: coordinate exceeds modulus")
}
}
return errors.New("sm9: coordinate equals modulus")
}
func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }
func sign0(e *gfP) int {
x := &gfP{}
montDecode(x, e)
for w := 3; w >= 0; w-- {
if x[w] > pMinus1Over2[w] {
return 1
} else if x[w] < pMinus1Over2[w] {
return -1
}
}
return 1
}
func legendre(e *gfP) int {
f := &gfP{}
// Since p = 8k+5, then e^(4k+2) is the Legendre symbol of e.
f.exp(e, pMinus1Over2)
montDecode(f, f)
if *f != [4]uint64{} {
return 2*int(f[0]&1) - 1
}
return 0
}
func (e *gfP) Div2(f *gfP) *gfP {
ret := &gfP{}
gfpMul(ret, f, twoInvert)
e.Set(ret)
return e
}
var twoInvert = &gfP{}
func init() {
t1 := newGFp(2)
twoInvert.Invert(t1)
}