mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-22 02:06:18 +08:00
808 lines
23 KiB
Go
808 lines
23 KiB
Go
package sm2
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/sha512"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/emmansun/gmsm/sm3"
|
|
"golang.org/x/crypto/cryptobyte"
|
|
"golang.org/x/crypto/cryptobyte/asn1"
|
|
)
|
|
|
|
const (
|
|
uncompressed byte = 0x04
|
|
compressed02 byte = 0x02
|
|
compressed03 byte = 0x03
|
|
mixed06 byte = 0x06
|
|
mixed07 byte = 0x07
|
|
)
|
|
|
|
// A invertible implements fast inverse mod Curve.Params().N
|
|
type invertible interface {
|
|
// Inverse returns the inverse of k in GF(P)
|
|
Inverse(k *big.Int) *big.Int
|
|
}
|
|
|
|
// combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
|
|
type combinedMult interface {
|
|
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
|
|
}
|
|
|
|
// PrivateKey represents an ECDSA SM2 private key.
|
|
type PrivateKey struct {
|
|
ecdsa.PrivateKey
|
|
}
|
|
|
|
type pointMarshalMode byte
|
|
|
|
const (
|
|
//MarshalUncompressed uncompressed mashal mode
|
|
MarshalUncompressed pointMarshalMode = iota
|
|
//MarshalCompressed compressed mashal mode
|
|
MarshalCompressed
|
|
//MarshalMixed mixed mashal mode
|
|
MarshalMixed
|
|
)
|
|
|
|
type ciphertextSplicingOrder byte
|
|
|
|
const (
|
|
C1C3C2 ciphertextSplicingOrder = iota
|
|
C1C2C3
|
|
)
|
|
|
|
type ciphertextEncoding byte
|
|
|
|
const (
|
|
ENCODING_PLAIN ciphertextEncoding = iota
|
|
ENCODING_ASN1
|
|
)
|
|
|
|
// EncrypterOpts encryption options
|
|
type EncrypterOpts struct {
|
|
CiphertextEncoding ciphertextEncoding
|
|
PointMarshalMode pointMarshalMode
|
|
CiphertextSplicingOrder ciphertextSplicingOrder
|
|
}
|
|
|
|
// DecrypterOpts decryption options
|
|
type DecrypterOpts struct {
|
|
CiphertextEncoding ciphertextEncoding
|
|
CipherTextSplicingOrder ciphertextSplicingOrder
|
|
}
|
|
|
|
func NewPlainEncrypterOpts(marhsalMode pointMarshalMode, splicingOrder ciphertextSplicingOrder) *EncrypterOpts {
|
|
return &EncrypterOpts{ENCODING_PLAIN, marhsalMode, splicingOrder}
|
|
}
|
|
|
|
func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts {
|
|
return &DecrypterOpts{ENCODING_PLAIN, splicingOrder}
|
|
}
|
|
|
|
func (mode pointMarshalMode) mashal(curve elliptic.Curve, x, y *big.Int) []byte {
|
|
switch mode {
|
|
case MarshalCompressed:
|
|
return point2CompressedBytes(curve, x, y)
|
|
case MarshalMixed:
|
|
return point2MixedBytes(curve, x, y)
|
|
default:
|
|
return point2UncompressedBytes(curve, x, y)
|
|
}
|
|
}
|
|
|
|
var defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2}
|
|
|
|
var ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2}
|
|
|
|
var ASN1DecrypterOpts = &DecrypterOpts{ENCODING_ASN1, C1C3C2}
|
|
|
|
// directSigning is a standard Hash value that signals that no pre-hashing
|
|
// should be performed.
|
|
var directSigning crypto.Hash = 0
|
|
|
|
// Signer SM2 special signer
|
|
type Signer interface {
|
|
SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error)
|
|
}
|
|
|
|
type SM2SignerOption struct {
|
|
UID []byte
|
|
ForceGMSign bool
|
|
}
|
|
|
|
// NewSM2SignerOption create a SM2 specific signer option
|
|
// forceGMSign - if use GM specific sign logic, if yes, should pass raw message to sign
|
|
// uid - if forceGMSign is true, then you can pass uid, if no uid is provided, system will use default one
|
|
func NewSM2SignerOption(forceGMSign bool, uid []byte) *SM2SignerOption {
|
|
opt := &SM2SignerOption{
|
|
UID: uid,
|
|
ForceGMSign: forceGMSign,
|
|
}
|
|
if forceGMSign && len(uid) == 0 {
|
|
opt.UID = defaultUID
|
|
}
|
|
return opt
|
|
}
|
|
|
|
func (*SM2SignerOption) HashFunc() crypto.Hash {
|
|
return directSigning
|
|
}
|
|
|
|
// FromECPrivateKey convert an ecdsa private key to SM2 private key
|
|
func (priv *PrivateKey) FromECPrivateKey(key *ecdsa.PrivateKey) (*PrivateKey, error) {
|
|
if key.Curve != P256() {
|
|
return nil, errors.New("It's NOT a sm2 curve private key")
|
|
}
|
|
priv.PrivateKey = *key
|
|
return priv, nil
|
|
}
|
|
|
|
// Sign signs digest with priv, reading randomness from rand. The opts argument
|
|
// is not currently used but, in keeping with the crypto.Signer interface,
|
|
// should be the hash function used to digest the message.
|
|
//
|
|
// This method implements crypto.Signer, which is an interface to support keys
|
|
// where the private part is kept in, for example, a hardware module. Common
|
|
// uses should use the Sign function in this package directly.
|
|
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
|
|
var r, s *big.Int
|
|
var err error
|
|
if sm2Opts, ok := opts.(*SM2SignerOption); ok && sm2Opts.ForceGMSign {
|
|
r, s, err = SignWithSM2(rand, &priv.PrivateKey, sm2Opts.UID, digest)
|
|
} else {
|
|
r, s, err = Sign(rand, &priv.PrivateKey, digest)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var b cryptobyte.Builder
|
|
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
|
b.AddASN1BigInt(r)
|
|
b.AddASN1BigInt(s)
|
|
})
|
|
return b.Bytes()
|
|
}
|
|
|
|
// SignWithSM2 signs uid, msg with SignWithSM2 method.
|
|
func (priv *PrivateKey) SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) {
|
|
return priv.Sign(rand, msg, NewSM2SignerOption(true, uid))
|
|
}
|
|
|
|
// Decrypt decrypts msg. The opts argument should be appropriate for
|
|
// the primitive used.
|
|
func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
|
|
var sm2Opts *DecrypterOpts
|
|
sm2Opts, _ = opts.(*DecrypterOpts)
|
|
return decrypt(priv, msg, sm2Opts)
|
|
}
|
|
|
|
var (
|
|
one = new(big.Int).SetInt64(1)
|
|
initonce sync.Once
|
|
)
|
|
|
|
// P256 init and return the singleton
|
|
func P256() elliptic.Curve {
|
|
initonce.Do(initP256)
|
|
return p256
|
|
}
|
|
|
|
///////////////// below code ship from golan crypto/ecdsa ////////////////////
|
|
|
|
// randFieldElement returns a random element of the field underlying the given
|
|
// curve using the procedure given in [NSA] A.2.1.
|
|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
|
params := c.Params()
|
|
b := make([]byte, params.BitSize/8+8)
|
|
_, err = io.ReadFull(rand, b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
k = new(big.Int).SetBytes(b)
|
|
n := new(big.Int).Sub(params.N, one)
|
|
k.Mod(k, n)
|
|
k.Add(k, one)
|
|
return
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
const maxRetryLimit = 100
|
|
|
|
func kdf(z []byte, len int) ([]byte, bool) {
|
|
limit := (len + sm3.Size - 1) >> sm3.SizeBitSize
|
|
md := sm3.New()
|
|
var countBytes [4]byte
|
|
var ct uint32 = 1
|
|
k := make([]byte, len+sm3.Size-1)
|
|
for i := 0; i < limit; i++ {
|
|
binary.BigEndian.PutUint32(countBytes[:], ct)
|
|
md.Write(z)
|
|
md.Write(countBytes[:])
|
|
copy(k[i*sm3.Size:], md.Sum(nil))
|
|
ct++
|
|
md.Reset()
|
|
}
|
|
for i := 0; i < len; i++ {
|
|
if k[i] != 0 {
|
|
return k[:len], true
|
|
}
|
|
}
|
|
return k, false
|
|
}
|
|
|
|
func calculateC3(curve elliptic.Curve, x2, y2 *big.Int, msg []byte) []byte {
|
|
md := sm3.New()
|
|
md.Write(toBytes(curve, x2))
|
|
md.Write(msg)
|
|
md.Write(toBytes(curve, y2))
|
|
return md.Sum(nil)
|
|
}
|
|
|
|
func mashalASN1Ciphertext(x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
|
var b cryptobyte.Builder
|
|
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
|
b.AddASN1BigInt(x1)
|
|
b.AddASN1BigInt(y1)
|
|
b.AddASN1OctetString(c3)
|
|
b.AddASN1OctetString(c2)
|
|
})
|
|
return b.Bytes()
|
|
}
|
|
|
|
// sm2 encrypt and output ASN.1 result
|
|
func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) {
|
|
return Encrypt(random, pub, msg, ASN1EncrypterOpts)
|
|
}
|
|
|
|
// Encrypt sm2 encrypt implementation
|
|
func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
|
curve := pub.Curve
|
|
msgLen := len(msg)
|
|
if msgLen == 0 {
|
|
return nil, nil
|
|
}
|
|
if opts == nil {
|
|
opts = defaultEncrypterOpts
|
|
}
|
|
//A3, requirement is to check if h*P is infinite point, h is 1
|
|
if pub.X.Sign() == 0 && pub.Y.Sign() == 0 {
|
|
return nil, errors.New("SM2: invalid public key")
|
|
}
|
|
for {
|
|
//A1, generate random k
|
|
k, err := randFieldElement(curve, random)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
//A2, calculate C1 = k * G
|
|
x1, y1 := curve.ScalarBaseMult(k.Bytes())
|
|
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
|
|
|
//A4, calculate k * P (point of Public Key)
|
|
x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes())
|
|
|
|
//A5, calculate t=KDF(x2||y2, klen)
|
|
var kdfCount int = 0
|
|
t, success := kdf(append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
|
if !success {
|
|
kdfCount++
|
|
if kdfCount > maxRetryLimit {
|
|
return nil, fmt.Errorf("SM2: A5, failed to calculate valid t, tried %v times", kdfCount)
|
|
}
|
|
continue
|
|
}
|
|
|
|
//A6, C2 = M + t;
|
|
c2 := make([]byte, msgLen)
|
|
for i := 0; i < msgLen; i++ {
|
|
c2[i] = msg[i] ^ t[i]
|
|
}
|
|
|
|
//A7, C3 = hash(x2||M||y2)
|
|
c3 := calculateC3(curve, x2, y2, msg)
|
|
|
|
if opts.CiphertextEncoding == ENCODING_PLAIN {
|
|
if opts.CiphertextSplicingOrder == C1C3C2 {
|
|
// c1 || c3 || c2
|
|
return append(append(c1, c3...), c2...), nil
|
|
}
|
|
// c1 || c2 || c3
|
|
return append(append(c1, c2...), c3...), nil
|
|
}
|
|
// ASN.1 format will force C3 C2 order
|
|
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
|
}
|
|
}
|
|
|
|
// GenerateKey generates a public and private key pair.
|
|
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
|
|
c := P256()
|
|
k, err := randFieldElement(c, rand)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
priv := new(PrivateKey)
|
|
priv.PublicKey.Curve = c
|
|
priv.D = k
|
|
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
|
return priv, nil
|
|
}
|
|
|
|
// Decrypt sm2 decrypt implementation by default DecrypterOpts{C1C3C2}
|
|
func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
|
return decrypt(priv, ciphertext, nil)
|
|
}
|
|
|
|
func decryptASN1(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
|
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return rawDecrypt(priv, x1, y1, c2, c3)
|
|
}
|
|
|
|
func rawDecrypt(priv *PrivateKey, x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
|
curve := priv.Curve
|
|
x2, y2 := curve.ScalarMult(x1, y1, priv.D.Bytes())
|
|
msgLen := len(c2)
|
|
t, success := kdf(append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
|
if !success {
|
|
return nil, errors.New("SM2: invalid cipher text")
|
|
}
|
|
|
|
//B5, calculate msg = c2 ^ t
|
|
msg := make([]byte, msgLen)
|
|
for i := 0; i < msgLen; i++ {
|
|
msg[i] = c2[i] ^ t[i]
|
|
}
|
|
u := calculateC3(curve, x2, y2, msg)
|
|
for i := 0; i < sm3.Size; i++ {
|
|
if c3[i] != u[i] {
|
|
return nil, errors.New("SM2: invalid hash value")
|
|
}
|
|
}
|
|
return msg, nil
|
|
}
|
|
|
|
func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
|
splicingOrder := C1C3C2
|
|
if opts != nil {
|
|
if opts.CiphertextEncoding == ENCODING_ASN1 {
|
|
return decryptASN1(priv, ciphertext)
|
|
}
|
|
splicingOrder = opts.CipherTextSplicingOrder
|
|
}
|
|
if ciphertext[0] == 0x30 {
|
|
return decryptASN1(priv, ciphertext)
|
|
}
|
|
ciphertextLen := len(ciphertext)
|
|
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
|
return nil, errors.New("SM2: invalid ciphertext length")
|
|
}
|
|
curve := priv.Curve
|
|
// B1, get C1, and check C1
|
|
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
//B4, calculate t=KDF(x2||y2, klen)
|
|
var c2, c3 []byte
|
|
if splicingOrder == C1C3C2 {
|
|
c2 = ciphertext[c3Start+sm3.Size:]
|
|
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
|
} else {
|
|
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
|
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
|
}
|
|
|
|
return rawDecrypt(priv, x1, y1, c2, c3)
|
|
}
|
|
|
|
func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) {
|
|
var (
|
|
x1, y1 = &big.Int{}, &big.Int{}
|
|
c2, c3 []byte
|
|
inner cryptobyte.String
|
|
)
|
|
input := cryptobyte.String(ciphertext)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(x1) ||
|
|
!inner.ReadASN1Integer(y1) ||
|
|
!inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) ||
|
|
!inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) ||
|
|
!inner.Empty() {
|
|
return nil, nil, nil, nil, errors.New("SM2: invalid asn1 format ciphertext")
|
|
}
|
|
return x1, y1, c2, c3, nil
|
|
}
|
|
|
|
// ASN1Ciphertext2Plain utility method to convert ASN.1 encoding ciphertext to plain encoding format
|
|
func ASN1Ciphertext2Plain(ciphertext []byte, opts *EncrypterOpts) ([]byte, error) {
|
|
if opts == nil {
|
|
opts = defaultEncrypterOpts
|
|
}
|
|
x1, y1, c2, c3, err := unmarshalASN1Ciphertext((ciphertext))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
curve := P256()
|
|
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
|
if opts.CiphertextSplicingOrder == C1C3C2 {
|
|
// c1 || c3 || c2
|
|
return append(append(c1, c3...), c2...), nil
|
|
}
|
|
// c1 || c2 || c3
|
|
return append(append(c1, c2...), c3...), nil
|
|
}
|
|
|
|
// PlainCiphertext2ASN1 utility method to convert plain encoding ciphertext to ASN.1 encoding format
|
|
func PlainCiphertext2ASN1(ciphertext []byte, from ciphertextSplicingOrder) ([]byte, error) {
|
|
if ciphertext[0] == 0x30 {
|
|
return nil, errors.New("SM2: invalid plain encoding ciphertext")
|
|
}
|
|
curve := P256()
|
|
ciphertextLen := len(ciphertext)
|
|
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
|
return nil, errors.New("SM2: invalid ciphertext length")
|
|
}
|
|
// get C1, and check C1
|
|
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var c2, c3 []byte
|
|
|
|
if from == C1C3C2 {
|
|
c2 = ciphertext[c3Start+sm3.Size:]
|
|
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
|
} else {
|
|
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
|
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
|
}
|
|
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
|
}
|
|
|
|
// AdjustCiphertextSplicingOrder utility method to change c2 c3 order
|
|
func AdjustCiphertextSplicingOrder(ciphertext []byte, from, to ciphertextSplicingOrder) ([]byte, error) {
|
|
curve := P256()
|
|
if from == to {
|
|
return ciphertext, nil
|
|
}
|
|
ciphertextLen := len(ciphertext)
|
|
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
|
return nil, errors.New("SM2: invalid ciphertext length")
|
|
}
|
|
|
|
// get C1, and check C1
|
|
_, _, c3Start, err := bytes2Point(curve, ciphertext)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var c1, c2, c3 []byte
|
|
|
|
c1 = ciphertext[:c3Start]
|
|
if from == C1C3C2 {
|
|
c2 = ciphertext[c3Start+sm3.Size:]
|
|
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
|
} else {
|
|
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
|
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
|
}
|
|
|
|
result := make([]byte, ciphertextLen)
|
|
copy(result, c1)
|
|
if to == C1C3C2 {
|
|
// c1 || c3 || c2
|
|
copy(result[c3Start:], c3)
|
|
copy(result[c3Start+sm3.Size:], c2)
|
|
} else {
|
|
// c1 || c2 || c3
|
|
copy(result[c3Start:], c2)
|
|
copy(result[ciphertextLen-sm3.Size:], c3)
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. There is some disagreement
|
|
// about how this is done. [NSA] suggests that this is done in the obvious
|
|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
|
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
|
|
// OpenSSL right shifts excess bits from the number if the hash is too large
|
|
// and we mirror that too.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := len(hash)*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
const (
|
|
aesIV = "IV for ECDSA CTR"
|
|
)
|
|
|
|
var errZeroParam = errors.New("zero parameter")
|
|
|
|
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
|
|
// This has better constant-time properties than Euclid's method (implemented
|
|
// in math/big.Int.ModInverse) although math/big itself isn't strictly
|
|
// constant-time so it's not perfect.
|
|
func fermatInverse(k, N *big.Int) *big.Int {
|
|
two := big.NewInt(2)
|
|
nMinus2 := new(big.Int).Sub(N, two)
|
|
return new(big.Int).Exp(k, nMinus2, N)
|
|
}
|
|
|
|
// Sign signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the signature as a pair of integers. The security of the private key
|
|
// depends on the entropy of rand.
|
|
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
if !strings.EqualFold(priv.Params().Name, P256().Params().Name) {
|
|
return ecdsa.Sign(rand, priv, hash)
|
|
}
|
|
maybeReadByte(rand)
|
|
|
|
// Get min(log2(q) / 2, 256) bits of entropy from rand.
|
|
entropylen := (priv.Curve.Params().BitSize + 7) / 16
|
|
if entropylen > 32 {
|
|
entropylen = 32
|
|
}
|
|
entropy := make([]byte, entropylen)
|
|
_, err = io.ReadFull(rand, entropy)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Initialize an SHA-512 hash context; digest ...
|
|
md := sha512.New()
|
|
md.Write(priv.D.Bytes()) // the private key,
|
|
md.Write(entropy) // the entropy,
|
|
md.Write(hash) // and the input hash;
|
|
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
|
|
// which is an indifferentiable MAC.
|
|
|
|
// Create an AES-CTR instance to use as a CSPRNG.
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Create a CSPRNG that xors a stream of zeros with
|
|
// the output of the AES-CTR instance.
|
|
csprng := cipher.StreamReader{
|
|
R: zeroReader,
|
|
S: cipher.NewCTR(block, []byte(aesIV)),
|
|
}
|
|
|
|
// See [NSA] 3.4.1
|
|
c := priv.PublicKey.Curve
|
|
N := c.Params().N
|
|
if N.Sign() == 0 {
|
|
return nil, nil, errZeroParam
|
|
}
|
|
var k *big.Int
|
|
e := hashToInt(hash, c)
|
|
for {
|
|
for {
|
|
k, err = randFieldElement(c, csprng)
|
|
if err != nil {
|
|
r = nil
|
|
return
|
|
}
|
|
|
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
|
|
r.Add(r, e) // r = x + e
|
|
r.Mod(r, N) // r = (x + e) mod N
|
|
if r.Sign() != 0 {
|
|
t := new(big.Int).Add(r, k)
|
|
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
|
|
break
|
|
}
|
|
}
|
|
}
|
|
s = new(big.Int).Mul(priv.D, r)
|
|
s = new(big.Int).Sub(k, s)
|
|
dp1 := new(big.Int).Add(priv.D, one)
|
|
|
|
var dp1Inv *big.Int
|
|
|
|
if in, ok := priv.Curve.(invertible); ok {
|
|
dp1Inv = in.Inverse(dp1)
|
|
} else {
|
|
dp1Inv = fermatInverse(dp1, N) // N != 0
|
|
}
|
|
|
|
s.Mul(s, dp1Inv)
|
|
s.Mod(s, N) // N != 0
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
|
|
|
|
// calculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
|
|
func calculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
|
|
uidLen := len(uid)
|
|
if uidLen >= 0x2000 {
|
|
return nil, errors.New("the uid is too long")
|
|
}
|
|
entla := uint16(uidLen) << 3
|
|
md := sm3.New()
|
|
md.Write([]byte{byte(entla >> 8), byte(entla)})
|
|
if uidLen > 0 {
|
|
md.Write(uid)
|
|
}
|
|
a := new(big.Int).Sub(pub.Params().P, big.NewInt(3))
|
|
md.Write(toBytes(pub.Curve, a))
|
|
md.Write(toBytes(pub.Curve, pub.Params().B))
|
|
md.Write(toBytes(pub.Curve, pub.Params().Gx))
|
|
md.Write(toBytes(pub.Curve, pub.Params().Gy))
|
|
md.Write(toBytes(pub.Curve, pub.X))
|
|
md.Write(toBytes(pub.Curve, pub.Y))
|
|
return md.Sum(nil), nil
|
|
}
|
|
|
|
// SignWithSM2 follow sm2 dsa standards for hash part
|
|
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
|
|
if len(uid) == 0 {
|
|
uid = defaultUID
|
|
}
|
|
za, err := calculateZA(&priv.PublicKey, uid)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
md := sm3.New()
|
|
md.Write(za)
|
|
md.Write(msg)
|
|
|
|
return Sign(rand, priv, md.Sum(nil))
|
|
}
|
|
|
|
// SignASN1 signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the ASN.1 encoded signature. The security of the private key
|
|
// depends on the entropy of rand.
|
|
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
|
|
return priv.Sign(rand, hash, opts)
|
|
}
|
|
|
|
// Verify verifies the signature in r, s of hash using the public key, pub. Its
|
|
// return value records whether the signature is valid.
|
|
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
|
|
if strings.EqualFold(pub.Params().Name, P256().Params().Name) {
|
|
c := pub.Curve
|
|
N := c.Params().N
|
|
|
|
if r.Sign() <= 0 || s.Sign() <= 0 {
|
|
return false
|
|
}
|
|
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
|
return false
|
|
}
|
|
e := hashToInt(hash, c)
|
|
t := new(big.Int).Add(r, s)
|
|
t.Mod(t, N)
|
|
if t.Sign() == 0 {
|
|
return false
|
|
}
|
|
|
|
var x *big.Int
|
|
if opt, ok := c.(combinedMult); ok {
|
|
x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes())
|
|
} else {
|
|
x1, y1 := c.ScalarBaseMult(s.Bytes())
|
|
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
|
|
x, _ = c.Add(x1, y1, x2, y2)
|
|
}
|
|
|
|
x.Add(x, e)
|
|
x.Mod(x, N)
|
|
return x.Cmp(r) == 0
|
|
}
|
|
return ecdsa.Verify(pub, hash, r, s)
|
|
}
|
|
|
|
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
|
|
// public key, pub. Its return value records whether the signature is valid.
|
|
func VerifyASN1(pub *ecdsa.PublicKey, hash, sig []byte) bool {
|
|
var (
|
|
r, s = &big.Int{}, &big.Int{}
|
|
inner cryptobyte.String
|
|
)
|
|
input := cryptobyte.String(sig)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(r) ||
|
|
!inner.ReadASN1Integer(s) ||
|
|
!inner.Empty() {
|
|
return false
|
|
}
|
|
return Verify(pub, hash, r, s)
|
|
}
|
|
|
|
// VerifyWithSM2 verifies the signature in r, s of hash using the public key, pub. Its
|
|
// return value records whether the signature is valid.
|
|
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
|
|
if len(uid) == 0 {
|
|
uid = defaultUID
|
|
}
|
|
za, err := calculateZA(pub, uid)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
md := sm3.New()
|
|
md.Write(za)
|
|
md.Write(msg)
|
|
return Verify(pub, md.Sum(nil), r, s)
|
|
}
|
|
|
|
// VerifyASN1WithSM2 verifies the signature in r, s of hash using the public key, pub. Its
|
|
// return value records whether the signature is valid.
|
|
func VerifyASN1WithSM2(pub *ecdsa.PublicKey, uid, msg, sig []byte) bool {
|
|
var (
|
|
r, s = &big.Int{}, &big.Int{}
|
|
inner cryptobyte.String
|
|
)
|
|
input := cryptobyte.String(sig)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(r) ||
|
|
!inner.ReadASN1Integer(s) ||
|
|
!inner.Empty() {
|
|
return false
|
|
}
|
|
return VerifyWithSM2(pub, uid, msg, r, s)
|
|
}
|
|
|
|
type zr struct {
|
|
io.Reader
|
|
}
|
|
|
|
// Read replaces the contents of dst with zeros.
|
|
func (z *zr) Read(dst []byte) (n int, err error) {
|
|
for i := range dst {
|
|
dst[i] = 0
|
|
}
|
|
return len(dst), nil
|
|
}
|
|
|
|
var zeroReader = &zr{}
|
|
|
|
// IsSM2PublicKey check if given public key is a SM2 public key or not
|
|
func IsSM2PublicKey(publicKey interface{}) bool {
|
|
pub, ok := publicKey.(*ecdsa.PublicKey)
|
|
return ok && strings.EqualFold(P256().Params().Name, pub.Curve.Params().Name)
|
|
}
|