mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-26 04:06:18 +08:00
75 lines
2.9 KiB
Go
75 lines
2.9 KiB
Go
//go:build arm64 && !purego
|
|
// +build arm64,!purego
|
|
|
|
package bn256
|
|
|
|
// gfP2 multiplication.
|
|
//
|
|
//go:noescape
|
|
func gfp2Mul(c, a, b *gfP2)
|
|
|
|
// gfP2 multiplication. c = a*b*u
|
|
//
|
|
//go:noescape
|
|
func gfp2MulU(c, a, b *gfP2)
|
|
|
|
// gfP2 square.
|
|
//
|
|
//go:noescape
|
|
func gfp2Square(c, a *gfP2)
|
|
|
|
// gfP2 square and mult u.
|
|
//
|
|
//go:noescape
|
|
func gfp2SquareU(c, a *gfP2)
|
|
|
|
// Point doubling. Sets res = in + in. in can be the point at infinity.
|
|
//
|
|
//go:noescape
|
|
func curvePointDoubleComplete(c, a *curvePoint)
|
|
|
|
func curvePointAddComplete(c, p1, p2 *curvePoint) {
|
|
// Complete addition formula for a = 0 from "Complete addition formulas for
|
|
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2.
|
|
// Algorithm 7: Complete, projective point addition for prime order j-invariant 0 short Weierstrass curves.
|
|
|
|
t0, t1, t2, t3, t4 := new(gfP), new(gfP), new(gfP), new(gfP), new(gfP)
|
|
x3, y3, z3 := new(gfP), new(gfP), new(gfP)
|
|
gfpMul(t0, &p1.x, &p2.x) // t0 := X1X2
|
|
gfpMul(t1, &p1.y, &p2.y) // t1 := Y1Y2
|
|
gfpMul(t2, &p1.z, &p2.z) // t2 := Z1Z2
|
|
gfpAdd(t3, &p1.x, &p1.y) // t3 := X1 + Y1
|
|
gfpAdd(t4, &p2.x, &p2.y) // t4 := X2 + Y2
|
|
gfpMul(t3, t3, t4) // t3 := t3 * t4 = (X1 + Y1) * (X2 + Y2)
|
|
gfpAdd(t4, t0, t1) // t4 := t0 + t1
|
|
gfpSub(t3, t3, t4) // t3 := t3 - t4 = X1Y2 + X2Y1
|
|
gfpAdd(t4, &p1.y, &p1.z) // t4 := Y1 + Z1
|
|
gfpAdd(x3, &p2.y, &p2.z) // X3 := Y2 + Z2
|
|
gfpMul(t4, t4, x3) // t4 := t4 * X3 = (Y1 + Z1)(Y2 + Z2)
|
|
gfpAdd(x3, t1, t2) // X3 := t1 + t2
|
|
gfpSub(t4, t4, x3) // t4 := t4 - X3 = Y1Z2 + Y2Z1
|
|
gfpAdd(x3, &p1.x, &p1.z) // X3 := X1 + Z1
|
|
gfpAdd(y3, &p2.x, &p2.z) // Y3 := X2 + Z2
|
|
gfpMul(x3, x3, y3) // X3 := X3 * Y3
|
|
gfpAdd(y3, t0, t2) // Y3 := t0 + t2
|
|
gfpSub(y3, x3, y3) // Y3 := X3 - Y3 = X1Z2 + X2Z1
|
|
gfpTriple(t0, t0) // t0 := t0 + t0 + t0 = 3X1X2
|
|
gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ1Z2
|
|
gfpAdd(z3, t1, t2) // Z3 := t1 + t2 = Y1Y2 + 3bZ1Z2
|
|
gfpSub(t1, t1, t2) // t1 := t1 - t2 = Y1Y2 - 3bZ1Z2
|
|
gfpMul(y3, threeCurveB, y3) // Y3 = 3b * Y3 = 3b(X1Z2 + X2Z1)
|
|
gfpMul(x3, t4, y3) // X3 := t4 * Y3 = 3b(X1Z2 + X2Z1)(Y1Z2 + Y2Z1)
|
|
gfpMul(t2, t3, t1) // t2 := t3 * t1 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2)
|
|
gfpSub(x3, t2, x3) // X3 := t2 - X3 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2) - 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1)
|
|
gfpMul(y3, y3, t0) // Y3 := Y3 * t0 = 9bX1X2(X1Z2 + X2Z1)
|
|
gfpMul(t1, t1, z3) // t1 := t1 * Z3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2)
|
|
gfpAdd(y3, t1, y3) // Y3 := t1 + Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2) + 9bX1X2(X1Z2 + X2Z1)
|
|
gfpMul(t0, t0, t3) // t0 := t0 * t3 = 3X1X2(X1Y2 + X2Y1)
|
|
gfpMul(z3, z3, t4) // Z3 := Z3 * t4 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2)
|
|
gfpAdd(z3, z3, t0) // Z3 := Z3 + t0 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1)
|
|
|
|
c.x.Set(x3)
|
|
c.y.Set(y3)
|
|
c.z.Set(z3)
|
|
}
|