gmsm/sm9/bn256/bn_pair_b6.go
2023-07-02 11:23:36 +08:00

186 lines
4.6 KiB
Go

package bn256
// (ret.x t + ret.y) * ((cs)t + (bs+a))
//= ((ret.x * (bs+a))+ret.y*cs) t + (ret.y*(bs+a) + ret.x*cs*s)
//= (ret.x*bs + ret.x*a + ret.y*cs) t + (ret.y*bs + ret.x*cs*s + ret.y * a)
//ret.x = (ret.x + ret.y)(cs + bs + a) - ret.y(bs+a) - ret.x*cs
//ret.y = ret.y(bs+a) + ret.x*cs *s
func mulLineB6(ret *gfP12b6, a, b, c *gfP2) {
a2 := &gfP6{}
a2.y.Set(b)
a2.z.Set(a)
a2.Mul(&ret.y, a2)
t3 := &gfP6{}
t3.MulScalar(&ret.x, c).MulS(t3)
t := (&gfP2{}).Add(b, c)
t2 := &gfP6{}
t2.y.Set(t)
t2.z.Set(a)
ret.x.Add(&ret.x, &ret.y)
ret.y.Set(t3)
ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y)
ret.y.MulS(&ret.y)
ret.y.Add(&ret.y, a2)
}
// R-ate Pairing G2 x G1 -> GT
//
// P is a point of order q in G1. Q(x,y) is a point of order q in G2.
// Note that Q is a point on the sextic twist of the curve over Fp^2, P(x,y) is a point on the
// curve over the base field Fp
//
func millerB6(q *twistPoint, p *curvePoint) *gfP12b6 {
ret := (&gfP12b6{}).SetOne()
aAffine := &twistPoint{}
aAffine.Set(q)
aAffine.MakeAffine()
minusA := &twistPoint{}
minusA.Neg(aAffine)
bAffine := &curvePoint{}
bAffine.Set(p)
bAffine.MakeAffine()
r := &twistPoint{}
r.Set(aAffine)
r2 := (&gfP2{}).Square(&aAffine.y)
a, b, c := &gfP2{}, &gfP2{}, &gfP2{}
newR := &twistPoint{}
var tmpR *twistPoint
for i := len(sixUPlus2NAF) - 1; i > 0; i-- {
lineFunctionDouble(r, newR, bAffine, a, b, c)
if i != len(sixUPlus2NAF)-1 {
ret.Square(ret)
}
mulLineB6(ret, a, b, c)
tmpR= r
r = newR
newR= tmpR
switch sixUPlus2NAF[i-1] {
case 1:
lineFunctionAdd(r, aAffine, newR, bAffine, r2, a, b, c)
case -1:
lineFunctionAdd(r, minusA, newR, bAffine, r2, a, b, c)
default:
continue
}
mulLineB6(ret, a, b, c)
tmpR= r
r = newR
newR= tmpR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (x*β^(-1/3), y*β^(-1/2)). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄*β^(-p/3)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of β^(-1/3) so we
// rewrite this as x̄*β^((-p+1)/3)*β^(-1/3).
//
// A similar argument can be made for the y value.
q1 := &twistPoint{}
q1.x.Conjugate(&aAffine.x)
q1.x.MulScalar(&q1.x, betaToNegPPlus1Over3)
q1.y.Conjugate(&aAffine.y)
q1.y.MulScalar(&q1.y, betaToNegPPlus1Over2)
q1.z.SetOne()
q1.t.SetOne()
minusQ2 := &twistPoint{}
minusQ2.x.Set(&aAffine.x)
minusQ2.x.MulScalar(&minusQ2.x, betaToNegP2Plus1Over3)
minusQ2.y.Neg(&aAffine.y)
minusQ2.y.MulScalar(&minusQ2.y, betaToNegP2Plus1Over2)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(&q1.y)
lineFunctionAdd(r, q1, newR, bAffine, r2, a, b, c)
mulLineB6(ret, a, b, c)
tmpR= r
r = newR
newR= tmpR
r2.Square(&minusQ2.y)
lineFunctionAdd(r, minusQ2, newR, bAffine, r2, a, b, c)
mulLineB6(ret, a, b, c)
return ret
}
func pairingB6(a *twistPoint, b *curvePoint) *gfP12 {
e := millerB6(a, b)
ret := finalExponentiationB6(e)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret.ToGfP12()
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT. https://eprint.iacr.org/2007/390.pdf
// http://cryptojedi.org/papers/dclxvi-20100714.pdf
func finalExponentiationB6(in *gfP12b6) *gfP12b6 {
t1 := &gfP12b6{}
// This is the p^6-Frobenius
t1.x.Neg(&in.x)
t1.y.Set(&in.y)
inv := &gfP12b6{}
inv.Invert(in)
t1.Mul(t1, inv)
t2 := (&gfP12b6{}).FrobeniusP2(t1)
t1.Mul(t1, t2)
fp := (&gfP12b6{}).Frobenius(t1)
fp2 := (&gfP12b6{}).FrobeniusP2(t1)
fp3 := (&gfP12b6{}).Frobenius(fp2)
fu := (&gfP12b6{}).Exp(t1, u)
fu2 := (&gfP12b6{}).Exp(fu, u)
fu3 := (&gfP12b6{}).Exp(fu2, u)
y3 := (&gfP12b6{}).Frobenius(fu)
fu2p := (&gfP12b6{}).Frobenius(fu2)
fu3p := (&gfP12b6{}).Frobenius(fu3)
y2 := (&gfP12b6{}).FrobeniusP2(fu2)
y0 := &gfP12b6{}
y0.Mul(fp, fp2).Mul(y0, fp3)
y1 := (&gfP12b6{}).Conjugate(t1)
y5 := (&gfP12b6{}).Conjugate(fu2)
y3.Conjugate(y3)
y4 := (&gfP12b6{}).Mul(fu, fu2p)
y4.Conjugate(y4)
y6 := (&gfP12b6{}).Mul(fu3, fu3p)
y6.Conjugate(y6)
t0 := (&gfP12b6{}).Square(y6)
t0.Mul(t0, y4).Mul(t0, y5)
t1.Mul(y3, y5).Mul(t1, t0)
t0.Mul(t0, y2)
t1.Square(t1).Mul(t1, t0).Square(t1)
t0.Mul(t1, y1)
t1.Mul(t1, y0)
t0.Square(t0).Mul(t0, t1)
return t0
}