gmsm/ecdh/ecdh_test.go
2022-08-26 13:25:56 +08:00

161 lines
3.9 KiB
Go

package ecdh_test
import (
"bytes"
"crypto"
"crypto/cipher"
"crypto/rand"
"fmt"
"io"
"testing"
"github.com/emmansun/gmsm/ecdh"
"golang.org/x/crypto/chacha20"
)
// Check that PublicKey and PrivateKey implement the interfaces documented in
// crypto.PublicKey and crypto.PrivateKey.
var _ interface {
Equal(x crypto.PublicKey) bool
} = &ecdh.PublicKey{}
var _ interface {
Public() crypto.PublicKey
Equal(x crypto.PrivateKey) bool
} = &ecdh.PrivateKey{}
func TestECDH(t *testing.T) {
aliceKey, err := ecdh.P256().GenerateKey(rand.Reader)
if err != nil {
t.Fatal(err)
}
bobKey, err := ecdh.P256().GenerateKey(rand.Reader)
if err != nil {
t.Fatal(err)
}
alicePubKey, err := ecdh.P256().NewPublicKey(aliceKey.PublicKey().Bytes())
if err != nil {
t.Error(err)
}
if !bytes.Equal(aliceKey.PublicKey().Bytes(), alicePubKey.Bytes()) {
t.Error("encoded and decoded public keys are different")
}
if !aliceKey.PublicKey().Equal(alicePubKey) {
t.Error("encoded and decoded public keys are different")
}
alicePrivKey, err := ecdh.P256().NewPrivateKey(aliceKey.Bytes())
if err != nil {
t.Error(err)
}
if !bytes.Equal(aliceKey.Bytes(), alicePrivKey.Bytes()) {
t.Error("encoded and decoded private keys are different")
}
if !aliceKey.Equal(alicePrivKey) {
t.Error("encoded and decoded private keys are different")
}
bobSecret, err := ecdh.P256().ECDH(bobKey, aliceKey.PublicKey())
if err != nil {
t.Fatal(err)
}
aliceSecret, err := ecdh.P256().ECDH(aliceKey, bobKey.PublicKey())
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(bobSecret, aliceSecret) {
t.Error("two ECDH computations came out different")
}
}
type countingReader struct {
r io.Reader
n int
}
func (r *countingReader) Read(p []byte) (int, error) {
n, err := r.r.Read(p)
r.n += n
return n, err
}
func TestGenerateKey(t *testing.T) {
r := &countingReader{r: rand.Reader}
k, err := ecdh.P256().GenerateKey(r)
if err != nil {
t.Fatal(err)
}
// GenerateKey does rejection sampling. If the masking works correctly,
// the probability of a rejection is 1-ord(G)/2^ceil(log2(ord(G))),
// which for all curves is small enough (at most 2^-32, for P-256) that
// a bit flip is more likely to make this test fail than bad luck.
// Account for the extra MaybeReadByte byte, too.
if got, expected := r.n, len(k.Bytes())+1; got > expected {
t.Errorf("expected GenerateKey to consume at most %v bytes, got %v", expected, got)
}
}
func TestString(t *testing.T) {
s := fmt.Sprintf("%s", ecdh.P256())
if s != "sm2p256v1" {
t.Errorf("unexpected Curve string encoding: %q", s)
}
}
func BenchmarkECDH(b *testing.B) {
benchmarkAllCurves(b, func(b *testing.B, curve ecdh.Curve) {
c, err := chacha20.NewUnauthenticatedCipher(make([]byte, 32), make([]byte, 12))
if err != nil {
b.Fatal(err)
}
rand := cipher.StreamReader{
S: c, R: zeroReader,
}
peerKey, err := curve.GenerateKey(rand)
if err != nil {
b.Fatal(err)
}
peerShare := peerKey.PublicKey().Bytes()
b.ResetTimer()
b.ReportAllocs()
var allocationsSink byte
for i := 0; i < b.N; i++ {
key, err := curve.GenerateKey(rand)
if err != nil {
b.Fatal(err)
}
share := key.PublicKey().Bytes()
peerPubKey, err := curve.NewPublicKey(peerShare)
if err != nil {
b.Fatal(err)
}
secret, err := curve.ECDH(key, peerPubKey)
if err != nil {
b.Fatal(err)
}
allocationsSink ^= secret[0] ^ share[0]
}
})
}
func benchmarkAllCurves(b *testing.B, f func(b *testing.B, curve ecdh.Curve)) {
b.Run("SM2P256", func(b *testing.B) { f(b, ecdh.P256()) })
}
type zr struct{}
// Read replaces the contents of dst with zeros. It is safe for concurrent use.
func (zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
var zeroReader = zr{}