mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-22 02:06:18 +08:00
567 lines
17 KiB
Go
567 lines
17 KiB
Go
// It is by standing on the shoulders of giants.
|
||
|
||
// This file contains the Go wrapper for the constant-time, 64-bit assembly
|
||
// implementation of P256. The optimizations performed here are described in
|
||
// detail in:
|
||
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
|
||
// 256-bit primes"
|
||
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
|
||
// https://eprint.iacr.org/2013/816.pdf
|
||
//go:build amd64 || arm64
|
||
// +build amd64 arm64
|
||
|
||
package sm2
|
||
|
||
import (
|
||
"crypto/elliptic"
|
||
"math/big"
|
||
)
|
||
|
||
type (
|
||
p256Curve struct {
|
||
*elliptic.CurveParams
|
||
}
|
||
|
||
p256Point struct {
|
||
xyz [12]uint64
|
||
}
|
||
)
|
||
|
||
var (
|
||
p256 p256Curve
|
||
)
|
||
|
||
func initP256() {
|
||
// 2**256 - 2**224 - 2**96 + 2**64 - 1
|
||
p256.CurveParams = &elliptic.CurveParams{Name: "sm2p256v1"}
|
||
p256.P, _ = new(big.Int).SetString("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF", 16)
|
||
p256.N, _ = new(big.Int).SetString("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123", 16)
|
||
p256.B, _ = new(big.Int).SetString("28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93", 16)
|
||
p256.Gx, _ = new(big.Int).SetString("32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7", 16)
|
||
p256.Gy, _ = new(big.Int).SetString("BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0", 16)
|
||
p256.BitSize = 256
|
||
}
|
||
|
||
func (curve p256Curve) Params() *elliptic.CurveParams {
|
||
return curve.CurveParams
|
||
}
|
||
|
||
// Functions implemented in p256_asm_*64.s
|
||
// Montgomery multiplication modulo P256
|
||
//go:noescape
|
||
func p256Mul(res, in1, in2 []uint64)
|
||
|
||
// Montgomery square modulo P256, repeated n times (n >= 1)
|
||
//go:noescape
|
||
func p256Sqr(res, in []uint64, n int)
|
||
|
||
// Montgomery multiplication by 1
|
||
//go:noescape
|
||
func p256FromMont(res, in []uint64)
|
||
|
||
// iff cond == 1 val <- -val
|
||
//go:noescape
|
||
func p256NegCond(val []uint64, cond int)
|
||
|
||
// if cond == 0 res <- b; else res <- a
|
||
//go:noescape
|
||
func p256MovCond(res, a, b []uint64, cond int)
|
||
|
||
// Endianness swap
|
||
//go:noescape
|
||
func p256BigToLittle(res []uint64, in []byte)
|
||
|
||
//go:noescape
|
||
func p256LittleToBig(res []byte, in []uint64)
|
||
|
||
// Constant time table access
|
||
//go:noescape
|
||
func p256Select(point, table []uint64, idx int)
|
||
|
||
//go:noescape
|
||
func p256SelectBase(point *[12]uint64, table string, idx int)
|
||
|
||
// Montgomery multiplication modulo Ord(G)
|
||
//go:noescape
|
||
func p256OrdMul(res, in1, in2 []uint64)
|
||
|
||
// Montgomery square modulo Ord(G), repeated n times
|
||
//go:noescape
|
||
func p256OrdSqr(res, in []uint64, n int)
|
||
|
||
// Point add with in2 being affine point
|
||
// If sign == 1 -> in2 = -in2
|
||
// If sel == 0 -> res = in1
|
||
// if zero == 0 -> res = in2
|
||
//go:noescape
|
||
func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int)
|
||
|
||
// Point add. Returns one if the two input points were equal and zero
|
||
// otherwise. (Note that, due to the way that the equations work out, some
|
||
// representations of ∞ are considered equal to everything by this function.)
|
||
//go:noescape
|
||
func p256PointAddAsm(res, in1, in2 []uint64) int
|
||
|
||
// Point double
|
||
//go:noescape
|
||
func p256PointDoubleAsm(res, in []uint64)
|
||
|
||
var p256one = []uint64{0x0000000000000001, 0x00000000ffffffff, 0x0000000000000000, 0x0000000100000000}
|
||
|
||
// Inverse, implements invertible interface, used by Sign()
|
||
// n-2 =
|
||
// 1111111111111111111111111111111011111111111111111111111111111111
|
||
// 1111111111111111111111111111111111111111111111111111111111111111
|
||
// 0111001000000011110111110110101100100001110001100000010100101011
|
||
// 0101001110111011111101000000100100111001110101010100000100100001
|
||
//
|
||
func (curve p256Curve) Inverse(k *big.Int) *big.Int {
|
||
if k.Sign() < 0 {
|
||
// This should never happen.
|
||
k = new(big.Int).Neg(k)
|
||
}
|
||
|
||
if k.Cmp(p256.N) >= 0 {
|
||
// This should never happen.
|
||
k = new(big.Int).Mod(k, p256.N)
|
||
}
|
||
|
||
// table will store precomputed powers of x.
|
||
var table [4 * 10]uint64
|
||
var (
|
||
_1 = table[4*0 : 4*1]
|
||
_11 = table[4*1 : 4*2]
|
||
_101 = table[4*2 : 4*3]
|
||
_111 = table[4*3 : 4*4]
|
||
_1111 = table[4*4 : 4*5]
|
||
_10101 = table[4*5 : 4*6]
|
||
_101111 = table[4*6 : 4*7]
|
||
x = table[4*7 : 4*8]
|
||
t = table[4*8 : 4*9]
|
||
m = table[4*9 : 4*10]
|
||
)
|
||
|
||
fromBig(x[:], k)
|
||
// This code operates in the Montgomery domain where R = 2^256 mod n
|
||
// and n is the order of the scalar field. (See initP256 for the
|
||
// value.) Elements in the Montgomery domain take the form a×R and
|
||
// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
|
||
// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
|
||
// i.e. converts x into the Montgomery domain.
|
||
// Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
|
||
RR := []uint64{0x901192af7c114f20, 0x3464504ade6fa2fa, 0x620fc84c3affe0d4, 0x1eb5e412a22b3d3b}
|
||
|
||
p256OrdMul(_1, x, RR) // _1 , 2^0
|
||
p256OrdSqr(m, _1, 1) // _10, 2^1
|
||
p256OrdMul(_11, m, _1) // _11, 2^1 + 2^0
|
||
p256OrdMul(_101, m, _11) // _101, 2^2 + 2^0
|
||
p256OrdMul(_111, m, _101) // _111, 2^2 + 2^1 + 2^0
|
||
p256OrdSqr(x, _101, 1) // _1010, 2^3 + 2^1
|
||
p256OrdMul(_1111, _101, x) // _1111, 2^3 + 2^2 + 2^1 + 2^0
|
||
|
||
p256OrdSqr(t, x, 1) // _10100, 2^4 + 2^2
|
||
p256OrdMul(_10101, t, _1) // _10101, 2^4 + 2^2 + 2^0
|
||
p256OrdSqr(x, _10101, 1) // _101010, 2^5 + 2^3 + 2^1
|
||
p256OrdMul(_101111, _101, x) // _101111, 2^5 + 2^3 + 2^2 + 2^1 + 2^0
|
||
p256OrdMul(x, _10101, x) // _111111 = x6, 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0
|
||
p256OrdSqr(t, x, 2) // _11111100, 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2
|
||
|
||
p256OrdMul(m, t, m) // _11111110 = x8, , 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1
|
||
p256OrdMul(t, t, _11) // _11111111 = x8, , 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0
|
||
p256OrdSqr(x, t, 8) // _ff00, 2^15 + 2^14 + 2^13 + 2^12 + 2^11 + 2^10 + 2^9 + 2^8
|
||
p256OrdMul(m, x, m) // _fffe
|
||
p256OrdMul(x, x, t) // _ffff = x16, 2^15 + 2^14 + 2^13 + 2^12 + 2^11 + 2^10 + 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0
|
||
|
||
p256OrdSqr(t, x, 16) // _ffff0000, 2^31 + 2^30 + 2^29 + 2^28 + 2^27 + 2^26 + 2^25 + 2^24 + 2^23 + 2^22 + 2^21 + 2^20 + 2^19 + 2^18 + 2^17 + 2^16
|
||
p256OrdMul(m, t, m) // _fffffffe
|
||
p256OrdMul(t, t, x) // _ffffffff = x32
|
||
|
||
p256OrdSqr(x, m, 32) // _fffffffe00000000
|
||
p256OrdMul(x, x, t) // _fffffffeffffffff
|
||
p256OrdSqr(x, x, 32) // _fffffffeffffffff00000000
|
||
p256OrdMul(x, x, t) // _fffffffeffffffffffffffff
|
||
p256OrdSqr(x, x, 32) // _fffffffeffffffffffffffff00000000
|
||
p256OrdMul(x, x, t) // _fffffffeffffffffffffffffffffffff
|
||
|
||
sqrs := []uint8{
|
||
4, 3, 11, 5, 3, 5, 1,
|
||
3, 7, 5, 9, 7, 5, 5,
|
||
4, 5, 2, 2, 7, 3, 5,
|
||
5, 6, 2, 6, 3, 5,
|
||
}
|
||
muls := [][]uint64{
|
||
_111, _1, _1111, _1111, _101, _10101, _1,
|
||
_1, _111, _11, _101, _10101, _10101, _111,
|
||
_111, _1111, _11, _1, _1, _1, _111,
|
||
_111, _10101, _1, _1, _1, _1}
|
||
|
||
for i, s := range sqrs {
|
||
p256OrdSqr(x, x, int(s))
|
||
p256OrdMul(x, x, muls[i])
|
||
}
|
||
|
||
// Multiplying by one in the Montgomery domain converts a Montgomery
|
||
// value out of the domain.
|
||
one := []uint64{1, 0, 0, 0}
|
||
p256OrdMul(x, x, one)
|
||
|
||
xOut := make([]byte, 32)
|
||
p256LittleToBig(xOut, x)
|
||
return new(big.Int).SetBytes(xOut)
|
||
}
|
||
|
||
// fromBig converts a *big.Int into a format used by this code.
|
||
func fromBig(out []uint64, big *big.Int) {
|
||
for i := range out {
|
||
out[i] = 0
|
||
}
|
||
|
||
for i, v := range big.Bits() {
|
||
out[i] = uint64(v)
|
||
}
|
||
}
|
||
|
||
// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
|
||
// to out. If the scalar is equal or greater than the order of the group, it's
|
||
// reduced modulo that order.
|
||
func p256GetScalar(out []uint64, in []byte) {
|
||
n := new(big.Int).SetBytes(in)
|
||
|
||
if n.Cmp(p256.N) >= 0 {
|
||
n.Mod(n, p256.N)
|
||
}
|
||
fromBig(out, n)
|
||
}
|
||
|
||
// p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the
|
||
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
|
||
// R×R mod p. See comment in Inverse about how this is used.
|
||
var rr = []uint64{0x200000003, 0x2ffffffff, 0x100000001, 0x400000002}
|
||
|
||
func maybeReduceModP(in *big.Int) *big.Int {
|
||
if in.Cmp(p256.P) < 0 {
|
||
return in
|
||
}
|
||
return new(big.Int).Mod(in, p256.P)
|
||
}
|
||
|
||
func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
|
||
scalarReversed := make([]uint64, 4)
|
||
var r1, r2 p256Point
|
||
p256GetScalar(scalarReversed, baseScalar)
|
||
r1IsInfinity := scalarIsZero(scalarReversed)
|
||
r1.p256BaseMult(scalarReversed)
|
||
|
||
p256GetScalar(scalarReversed, scalar)
|
||
r2IsInfinity := scalarIsZero(scalarReversed)
|
||
fromBig(r2.xyz[0:4], maybeReduceModP(bigX))
|
||
fromBig(r2.xyz[4:8], maybeReduceModP(bigY))
|
||
p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:])
|
||
p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:])
|
||
|
||
// This sets r2's Z value to 1, in the Montgomery domain.
|
||
r2.xyz[8] = p256one[0]
|
||
r2.xyz[9] = p256one[1]
|
||
r2.xyz[10] = p256one[2]
|
||
r2.xyz[11] = p256one[3]
|
||
|
||
r2.p256ScalarMult(scalarReversed)
|
||
|
||
var sum, double p256Point
|
||
pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:])
|
||
p256PointDoubleAsm(double.xyz[:], r1.xyz[:])
|
||
sum.CopyConditional(&double, pointsEqual)
|
||
sum.CopyConditional(&r1, r2IsInfinity)
|
||
sum.CopyConditional(&r2, r1IsInfinity)
|
||
|
||
return sum.p256PointToAffine()
|
||
}
|
||
|
||
func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
|
||
scalarReversed := make([]uint64, 4)
|
||
p256GetScalar(scalarReversed, scalar)
|
||
|
||
var r p256Point
|
||
r.p256BaseMult(scalarReversed)
|
||
return r.p256PointToAffine()
|
||
}
|
||
|
||
func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
|
||
scalarReversed := make([]uint64, 4)
|
||
p256GetScalar(scalarReversed, scalar)
|
||
|
||
var r p256Point
|
||
fromBig(r.xyz[0:4], maybeReduceModP(bigX))
|
||
fromBig(r.xyz[4:8], maybeReduceModP(bigY))
|
||
p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:])
|
||
p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:])
|
||
// This sets r2's Z value to 1, in the Montgomery domain.
|
||
r.xyz[8] = p256one[0]
|
||
r.xyz[9] = p256one[1]
|
||
r.xyz[10] = p256one[2]
|
||
r.xyz[11] = p256one[3]
|
||
|
||
r.p256ScalarMult(scalarReversed)
|
||
return r.p256PointToAffine()
|
||
}
|
||
|
||
// uint64IsZero returns 1 if x is zero and zero otherwise.
|
||
func uint64IsZero(x uint64) int {
|
||
x = ^x
|
||
x &= x >> 32
|
||
x &= x >> 16
|
||
x &= x >> 8
|
||
x &= x >> 4
|
||
x &= x >> 2
|
||
x &= x >> 1
|
||
return int(x & 1)
|
||
}
|
||
|
||
// scalarIsZero returns 1 if scalar represents the zero value, and zero
|
||
// otherwise.
|
||
func scalarIsZero(scalar []uint64) int {
|
||
return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3])
|
||
}
|
||
|
||
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
|
||
zInv := make([]uint64, 4)
|
||
zInvSq := make([]uint64, 4)
|
||
p256Inverse(zInv, p.xyz[8:12])
|
||
p256Sqr(zInvSq, zInv, 1)
|
||
p256Mul(zInv, zInv, zInvSq)
|
||
|
||
p256Mul(zInvSq, p.xyz[0:4], zInvSq)
|
||
p256Mul(zInv, p.xyz[4:8], zInv)
|
||
|
||
p256FromMont(zInvSq, zInvSq)
|
||
p256FromMont(zInv, zInv)
|
||
|
||
xOut := make([]byte, 32)
|
||
yOut := make([]byte, 32)
|
||
p256LittleToBig(xOut, zInvSq)
|
||
p256LittleToBig(yOut, zInv)
|
||
|
||
return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
|
||
}
|
||
|
||
// CopyConditional copies overwrites p with src if v == 1, and leaves p
|
||
// unchanged if v == 0.
|
||
func (p *p256Point) CopyConditional(src *p256Point, v int) {
|
||
pMask := uint64(v) - 1
|
||
srcMask := ^pMask
|
||
|
||
for i, n := range p.xyz {
|
||
p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask)
|
||
}
|
||
}
|
||
|
||
// p256Inverse sets out to in^-1 mod p.
|
||
func p256Inverse(out, in []uint64) {
|
||
var stack [8 * 4]uint64
|
||
p2 := stack[4*0 : 4*0+4]
|
||
p4 := stack[4*1 : 4*1+4]
|
||
p8 := stack[4*2 : 4*2+4]
|
||
p16 := stack[4*3 : 4*3+4]
|
||
p32 := stack[4*4 : 4*4+4]
|
||
p64 := stack[4*5 : 4*5+4]
|
||
p32m2 := stack[4*6 : 4*6+4]
|
||
ptmp := stack[4*7 : 4*7+4]
|
||
|
||
p256Sqr(ptmp, in, 1) // 2^1
|
||
p256Mul(p2, ptmp, in) // 2^2 - 2^0
|
||
|
||
p256Sqr(out, p2, 2) // 2^4 - 2^2
|
||
p256Mul(ptmp, out, ptmp) // 2^4 - 2^1
|
||
p256Mul(p4, out, p2) // 2^4 - 2^0
|
||
|
||
p256Sqr(out, p4, 4) // 2^8 - 2^4
|
||
p256Mul(ptmp, out, ptmp) // 2^8 - 2^1
|
||
p256Mul(p8, out, p4) // 2^8 - 2^0
|
||
|
||
p256Sqr(out, p8, 8) // 2^16 - 2^8
|
||
p256Mul(ptmp, out, ptmp) // 2^16 - 2^1
|
||
p256Mul(p16, out, p8) // 2^16 - 2^0
|
||
|
||
p256Sqr(out, p16, 16) // 2^32 - 2^16
|
||
p256Mul(p32m2, out, ptmp) // 2^32 - 2^1
|
||
p256Mul(p32, out, p16) // 2^32 - 2^0
|
||
|
||
p256Sqr(out, p32, 32) //2^64 - 2^32
|
||
p256Mul(p64, out, p32) // 2^64 - 2^0
|
||
|
||
p256Sqr(out, p64, 64) //2^128 - 2^64
|
||
p256Mul(out, out, p64) // 2^128 - 2^0
|
||
p256Sqr(ptmp, out, 96) // 2^224 - 2^96
|
||
|
||
p256Sqr(out, p32m2, 224) //2^256 - 2^225
|
||
p256Mul(ptmp, ptmp, out) //2^256 - 2^224 - 2^96
|
||
|
||
p256Sqr(out, p32, 16) // 2^48 - 2^16
|
||
p256Mul(out, out, p16) // 2^48 - 2^0
|
||
|
||
p256Sqr(out, out, 8) // 2^56 - 2^8
|
||
p256Mul(out, out, p8) // 2^56 - 2^0
|
||
|
||
p256Sqr(out, out, 4) // 2^60 - 2^4
|
||
p256Mul(out, out, p4) // 2^60 - 2^0
|
||
|
||
p256Sqr(out, out, 2) // 2^62 - 2^2
|
||
p256Mul(out, out, p2) // 2^62 - 2^0
|
||
|
||
p256Sqr(out, out, 2) // 2^64 - 2^2
|
||
p256Mul(out, out, in) //2^64 - 2^2 + 2^0
|
||
|
||
p256Mul(out, out, ptmp) //2^256 - 2^224 - 2^96 + 2^64 - 3
|
||
}
|
||
|
||
func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) {
|
||
copy(r[index*12:], p.xyz[:])
|
||
}
|
||
|
||
func boothW5(in uint) (int, int) {
|
||
var s uint = ^((in >> 5) - 1)
|
||
var d uint = (1 << 6) - in - 1
|
||
d = (d & s) | (in & (^s))
|
||
d = (d >> 1) + (d & 1)
|
||
return int(d), int(s & 1)
|
||
}
|
||
|
||
func boothW6(in uint) (int, int) {
|
||
var s uint = ^((in >> 6) - 1)
|
||
var d uint = (1 << 7) - in - 1
|
||
d = (d & s) | (in & (^s))
|
||
d = (d >> 1) + (d & 1)
|
||
return int(d), int(s & 1)
|
||
}
|
||
|
||
func (p *p256Point) p256BaseMult(scalar []uint64) {
|
||
wvalue := (scalar[0] << 1) & 0x7f
|
||
sel, sign := boothW6(uint(wvalue))
|
||
p256SelectBase(&p.xyz, p256Precomputed, sel)
|
||
p256NegCond(p.xyz[4:8], sign)
|
||
|
||
// (This is one, in the Montgomery domain.)
|
||
p.xyz[8] = p256one[0]
|
||
p.xyz[9] = p256one[1]
|
||
p.xyz[10] = p256one[2]
|
||
p.xyz[11] = p256one[3]
|
||
|
||
var t0 p256Point
|
||
// (This is one, in the Montgomery domain.)
|
||
t0.xyz[8] = p256one[0]
|
||
t0.xyz[9] = p256one[1]
|
||
t0.xyz[10] = p256one[2]
|
||
t0.xyz[11] = p256one[3]
|
||
|
||
index := uint(5)
|
||
zero := sel
|
||
|
||
for i := 1; i < 43; i++ {
|
||
if index < 192 {
|
||
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
|
||
} else {
|
||
wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
|
||
}
|
||
index += 6
|
||
sel, sign = boothW6(uint(wvalue))
|
||
p256SelectBase(&t0.xyz, p256Precomputed[i*32*8*8:], sel)
|
||
p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
|
||
zero |= sel
|
||
}
|
||
}
|
||
|
||
func (p *p256Point) p256ScalarMult(scalar []uint64) {
|
||
// precomp is a table of precomputed points that stores powers of p
|
||
// from p^1 to p^16.
|
||
var precomp [16 * 4 * 3]uint64
|
||
var t0, t1, t2, t3 p256Point
|
||
|
||
// Prepare the table
|
||
p.p256StorePoint(&precomp, 0) // 1
|
||
|
||
p256PointDoubleAsm(t0.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(t1.xyz[:], t0.xyz[:])
|
||
p256PointDoubleAsm(t2.xyz[:], t1.xyz[:])
|
||
p256PointDoubleAsm(t3.xyz[:], t2.xyz[:])
|
||
t0.p256StorePoint(&precomp, 1) // 2
|
||
t1.p256StorePoint(&precomp, 3) // 4
|
||
t2.p256StorePoint(&precomp, 7) // 8
|
||
t3.p256StorePoint(&precomp, 15) // 16
|
||
|
||
p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
|
||
p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
|
||
p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
|
||
t0.p256StorePoint(&precomp, 2) // 3
|
||
t1.p256StorePoint(&precomp, 4) // 5
|
||
t2.p256StorePoint(&precomp, 8) // 9
|
||
|
||
p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
|
||
p256PointDoubleAsm(t1.xyz[:], t1.xyz[:])
|
||
t0.p256StorePoint(&precomp, 5) // 6
|
||
t1.p256StorePoint(&precomp, 9) // 10
|
||
|
||
p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:])
|
||
p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
|
||
t2.p256StorePoint(&precomp, 6) // 7
|
||
t1.p256StorePoint(&precomp, 10) // 11
|
||
|
||
p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
|
||
p256PointDoubleAsm(t2.xyz[:], t2.xyz[:])
|
||
t0.p256StorePoint(&precomp, 11) // 12
|
||
t2.p256StorePoint(&precomp, 13) // 14
|
||
|
||
p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
|
||
p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
|
||
t0.p256StorePoint(&precomp, 12) // 13
|
||
t2.p256StorePoint(&precomp, 14) // 15
|
||
|
||
// Start scanning the window from top bit
|
||
index := uint(254)
|
||
var sel, sign int
|
||
|
||
wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
|
||
sel, _ = boothW5(uint(wvalue))
|
||
|
||
p256Select(p.xyz[0:12], precomp[0:], sel)
|
||
zero := sel
|
||
|
||
for index > 4 {
|
||
index -= 5
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
|
||
if index < 192 {
|
||
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
|
||
} else {
|
||
wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
|
||
}
|
||
|
||
sel, sign = boothW5(uint(wvalue))
|
||
|
||
p256Select(t0.xyz[0:], precomp[0:], sel)
|
||
p256NegCond(t0.xyz[4:8], sign)
|
||
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
|
||
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
|
||
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
|
||
zero |= sel
|
||
}
|
||
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
|
||
|
||
wvalue = (scalar[0] << 1) & 0x3f
|
||
sel, sign = boothW5(uint(wvalue))
|
||
|
||
p256Select(t0.xyz[0:], precomp[0:], sel)
|
||
p256NegCond(t0.xyz[4:8], sign)
|
||
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
|
||
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
|
||
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
|
||
}
|