mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-25 19:56:18 +08:00
910 lines
27 KiB
Go
910 lines
27 KiB
Go
// It is by standing on the shoulders of giants.
|
||
|
||
// This file contains the Go wrapper for the constant-time, 64-bit assembly
|
||
// implementation of P256. The optimizations performed here are described in
|
||
// detail in:
|
||
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
|
||
// 256-bit primes"
|
||
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
|
||
// https://eprint.iacr.org/2013/816.pdf
|
||
//go:build (amd64 && !purego) || (arm64 && !purego)
|
||
|
||
package sm2ec
|
||
|
||
import (
|
||
_ "embed"
|
||
"errors"
|
||
"math/bits"
|
||
"unsafe"
|
||
|
||
"golang.org/x/sys/cpu"
|
||
)
|
||
|
||
// p256Element is a P-256 base field element in [0, P-1] in the Montgomery
|
||
// domain (with R 2²⁵⁶) as four limbs in little-endian order value.
|
||
type p256Element [4]uint64
|
||
|
||
// p256One is one in the Montgomery domain.
|
||
var p256One = p256Element{0x0000000000000001, 0x00000000ffffffff, 0x0000000000000000, 0x0000000100000000}
|
||
|
||
var p256Zero = p256Element{}
|
||
|
||
// p256P is 2^256 - 2^224 - 2^96 + 2^64 - 1.
|
||
var p256P = p256Element{0xffffffffffffffff, 0xffffffff00000000,
|
||
0xffffffffffffffff, 0xfffffffeffffffff}
|
||
|
||
// P256Point is a P-256 point. The zero value should not be assumed to be valid
|
||
// (although it is in this implementation).
|
||
type SM2P256Point struct {
|
||
// (X:Y:Z) are Jacobian coordinates where x = X/Z² and y = Y/Z³. The point
|
||
// at infinity can be represented by any set of coordinates with Z = 0.
|
||
x, y, z p256Element
|
||
}
|
||
|
||
// NewSM2P256Point returns a new SM2P256Point representing the point at infinity.
|
||
func NewSM2P256Point() *SM2P256Point {
|
||
return &SM2P256Point{
|
||
x: p256One, y: p256One, z: p256Zero,
|
||
}
|
||
}
|
||
|
||
// SetGenerator sets p to the canonical generator and returns p.
|
||
func (p *SM2P256Point) SetGenerator() *SM2P256Point {
|
||
p.x = p256Element{0x61328990f418029e, 0x3e7981eddca6c050,
|
||
0xd6a1ed99ac24c3c3, 0x91167a5ee1c13b05}
|
||
p.y = p256Element{0xc1354e593c2d0ddd, 0xc1f5e5788d3295fa,
|
||
0x8d4cfb066e2a48f8, 0x63cd65d481d735bd}
|
||
p.z = p256One
|
||
return p
|
||
}
|
||
|
||
// Set sets p = q and returns p.
|
||
func (p *SM2P256Point) Set(q *SM2P256Point) *SM2P256Point {
|
||
p.x, p.y, p.z = q.x, q.y, q.z
|
||
return p
|
||
}
|
||
|
||
const p256ElementLength = 32
|
||
const p256UncompressedLength = 1 + 2*p256ElementLength
|
||
const p256CompressedLength = 1 + p256ElementLength
|
||
|
||
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
|
||
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
|
||
// the curve, it returns nil and an error, and the receiver is unchanged.
|
||
// Otherwise, it returns p.
|
||
func (p *SM2P256Point) SetBytes(b []byte) (*SM2P256Point, error) {
|
||
// p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr
|
||
// here is R in the Montgomery domain, or R×R mod p. See comment in
|
||
// P256OrdInverse about how this is used.
|
||
rr := p256Element{0x0000000200000003, 0x00000002ffffffff,
|
||
0x0000000100000001, 0x0000000400000002}
|
||
|
||
switch {
|
||
// Point at infinity.
|
||
case len(b) == 1 && b[0] == 0:
|
||
return p.Set(NewSM2P256Point()), nil
|
||
|
||
// Uncompressed form.
|
||
case len(b) == p256UncompressedLength && b[0] == 4:
|
||
var r SM2P256Point
|
||
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
|
||
p256BigToLittle(&r.y, (*[32]byte)(b[33:65]))
|
||
if p256LessThanP(&r.x) == 0 || p256LessThanP(&r.y) == 0 {
|
||
return nil, errors.New("invalid P256 element encoding")
|
||
}
|
||
p256Mul(&r.x, &r.x, &rr)
|
||
p256Mul(&r.y, &r.y, &rr)
|
||
if err := p256CheckOnCurve(&r.x, &r.y); err != nil {
|
||
return nil, err
|
||
}
|
||
r.z = p256One
|
||
return p.Set(&r), nil
|
||
|
||
// Compressed form.
|
||
case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3):
|
||
var r SM2P256Point
|
||
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
|
||
if p256LessThanP(&r.x) == 0 {
|
||
return nil, errors.New("invalid P256 element encoding")
|
||
}
|
||
p256Mul(&r.x, &r.x, &rr)
|
||
|
||
// y² = x³ - 3x + b
|
||
p256Polynomial(&r.y, &r.x)
|
||
if !p256Sqrt(&r.y, &r.y) {
|
||
return nil, errors.New("invalid P256 compressed point encoding")
|
||
}
|
||
|
||
// Select the positive or negative root, as indicated by the least
|
||
// significant bit, based on the encoding type byte.
|
||
yy := new(p256Element)
|
||
p256FromMont(yy, &r.y)
|
||
cond := int(yy[0]&1) ^ int(b[0]&1)
|
||
p256NegCond(&r.y, cond)
|
||
|
||
r.z = p256One
|
||
return p.Set(&r), nil
|
||
|
||
default:
|
||
return nil, errors.New("invalid P256 point encoding")
|
||
}
|
||
}
|
||
|
||
// p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||
func p256Polynomial(y2, x *p256Element) *p256Element {
|
||
x3 := new(p256Element)
|
||
p256Sqr(x3, x, 1)
|
||
p256Mul(x3, x3, x)
|
||
|
||
threeX := new(p256Element)
|
||
p256Add(threeX, x, x)
|
||
p256Add(threeX, threeX, x)
|
||
p256NegCond(threeX, 1)
|
||
|
||
p256B := &p256Element{0x90d230632bc0dd42, 0x71cf379ae9b537ab,
|
||
0x527981505ea51c3c, 0x240fe188ba20e2c8}
|
||
|
||
p256Add(x3, x3, threeX)
|
||
p256Add(x3, x3, p256B)
|
||
|
||
*y2 = *x3
|
||
return y2
|
||
}
|
||
|
||
func p256CheckOnCurve(x, y *p256Element) error {
|
||
// y² = x³ - 3x + b
|
||
rhs := p256Polynomial(new(p256Element), x)
|
||
lhs := new(p256Element)
|
||
p256Sqr(lhs, y, 1)
|
||
if p256Equal(lhs, rhs) != 1 {
|
||
return errors.New("point not on SM2 P256 curve")
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// p256LessThanP returns 1 if x < p, and 0 otherwise. Note that a p256Element is
|
||
// not allowed to be equal to or greater than p, so if this function returns 0
|
||
// then x is invalid.
|
||
func p256LessThanP(x *p256Element) int {
|
||
var b uint64
|
||
_, b = bits.Sub64(x[0], p256P[0], b)
|
||
_, b = bits.Sub64(x[1], p256P[1], b)
|
||
_, b = bits.Sub64(x[2], p256P[2], b)
|
||
_, b = bits.Sub64(x[3], p256P[3], b)
|
||
return int(b)
|
||
}
|
||
|
||
// p256Add sets res = x + y.
|
||
func p256Add(res, x, y *p256Element) {
|
||
var c, b uint64
|
||
t1 := make([]uint64, 4)
|
||
t1[0], c = bits.Add64(x[0], y[0], 0)
|
||
t1[1], c = bits.Add64(x[1], y[1], c)
|
||
t1[2], c = bits.Add64(x[2], y[2], c)
|
||
t1[3], c = bits.Add64(x[3], y[3], c)
|
||
t2 := make([]uint64, 4)
|
||
t2[0], b = bits.Sub64(t1[0], p256P[0], 0)
|
||
t2[1], b = bits.Sub64(t1[1], p256P[1], b)
|
||
t2[2], b = bits.Sub64(t1[2], p256P[2], b)
|
||
t2[3], b = bits.Sub64(t1[3], p256P[3], b)
|
||
// Three options:
|
||
// - a+b < p
|
||
// then c is 0, b is 1, and t1 is correct
|
||
// - p <= a+b < 2^256
|
||
// then c is 0, b is 0, and t2 is correct
|
||
// - 2^256 <= a+b
|
||
// then c is 1, b is 1, and t2 is correct
|
||
t2Mask := (c ^ b) - 1
|
||
res[0] = (t1[0] & ^t2Mask) | (t2[0] & t2Mask)
|
||
res[1] = (t1[1] & ^t2Mask) | (t2[1] & t2Mask)
|
||
res[2] = (t1[2] & ^t2Mask) | (t2[2] & t2Mask)
|
||
res[3] = (t1[3] & ^t2Mask) | (t2[3] & t2Mask)
|
||
}
|
||
|
||
// p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns
|
||
// false and e is unchanged. e and x can overlap.
|
||
func p256Sqrt(e, x *p256Element) (isSquare bool) {
|
||
z, t0, t1, t2, t3, t4 := new(p256Element), new(p256Element), new(p256Element), new(p256Element), new(p256Element), new(p256Element)
|
||
|
||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||
//
|
||
// The sequence of 13 multiplications and 253 squarings is derived from the
|
||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||
//
|
||
// _10 = 2*1
|
||
// _11 = 1 + _10
|
||
// _110 = 2*_11
|
||
// _111 = 1 + _110
|
||
// _1110 = 2*_111
|
||
// _1111 = 1 + _1110
|
||
// _11110 = 2*_1111
|
||
// _111100 = 2*_11110
|
||
// _1111000 = 2*_111100
|
||
// i19 = (_1111000 << 3 + _111100) << 5 + _1111000
|
||
// x31 = (i19 << 2 + _11110) << 14 + i19 + _111
|
||
// i42 = x31 << 4
|
||
// i73 = i42 << 31
|
||
// i74 = i42 + i73
|
||
// i171 = (i73 << 32 + i74) << 62 + i74 + _1111
|
||
// return (i171 << 32 + 1) << 62
|
||
//
|
||
p256Sqr(z, x, 1) // z.Square(x)
|
||
p256Mul(z, x, z) // z.Mul(x, z)
|
||
p256Sqr(z, z, 1) // z.Square(z)
|
||
p256Mul(t0, x, z) // t0.Mul(x, z)
|
||
p256Sqr(z, t0, 1) // z.Square(t0)
|
||
p256Mul(z, x, z) // z.Mul(x, z)
|
||
p256Sqr(t2, z, 1) // t2.Square(z)
|
||
p256Sqr(t3, t2, 1) // t3.Square(t2)
|
||
p256Sqr(t1, t3, 1) // t1.Square(t3)
|
||
// t4.Square(t1)
|
||
//for s := 1; s < 3; s++ {
|
||
// t4.Square(t4)
|
||
//}
|
||
p256Sqr(t4, t1, 3)
|
||
p256Mul(t3, t3, t4) // t3.Mul(t3, t4)
|
||
//for s := 0; s < 5; s++ {
|
||
// t3.Square(t3)
|
||
//}
|
||
p256Sqr(t3, t3, 5)
|
||
p256Mul(t1, t1, t3) // t1.Mul(t1, t3)
|
||
//t3.Square(t1)
|
||
//for s := 1; s < 2; s++ {
|
||
// t3.Square(t3)
|
||
//}
|
||
p256Sqr(t3, t1, 2)
|
||
p256Mul(t2, t2, t3) // t2.Mul(t2, t3)
|
||
//for s := 0; s < 14; s++ {
|
||
// t2.Square(t2)
|
||
//}
|
||
p256Sqr(t2, t2, 14)
|
||
p256Mul(t1, t1, t2) // t1.Mul(t1, t2)
|
||
|
||
p256Mul(t0, t0, t1) // t0.Mul(t0, t1)
|
||
//for s := 0; s < 4; s++ {
|
||
// t0.Square(t0)
|
||
//}
|
||
p256Sqr(t0, t0, 4)
|
||
//t1.Square(t0)
|
||
//for s := 1; s < 31; s++ {
|
||
// t1.Square(t1)
|
||
//}
|
||
p256Sqr(t1, t0, 31)
|
||
p256Mul(t0, t0, t1) //t0.Mul(t0, t1)
|
||
//for s := 0; s < 32; s++ {
|
||
// t1.Square(t1)
|
||
//}
|
||
p256Sqr(t1, t1, 32)
|
||
|
||
p256Mul(t1, t0, t1) //t1.Mul(t0, t1)
|
||
//for s := 0; s < 62; s++ {
|
||
// t1.Square(t1)
|
||
//}
|
||
p256Sqr(t1, t1, 62)
|
||
p256Mul(t0, t0, t1) //t0.Mul(t0, t1)
|
||
p256Mul(z, z, t0) //z.Mul(z, t0)
|
||
//for s := 0; s < 32; s++ {
|
||
// e.Square(e)
|
||
//}
|
||
p256Sqr(z, z, 32)
|
||
p256Mul(z, z, x) // z.Mul(x, z)
|
||
//for s := 0; s < 62; s++ {
|
||
// z.Square(z)
|
||
//}
|
||
p256Sqr(z, z, 62)
|
||
|
||
p256Sqr(t1, z, 1)
|
||
if p256Equal(t1, x) != 1 {
|
||
return false
|
||
}
|
||
*e = *z
|
||
return true
|
||
}
|
||
|
||
// The following assembly functions are implemented in p256_asm_*.s
|
||
var supportBMI2 = cpu.X86.HasBMI2
|
||
|
||
var supportAVX2 = cpu.X86.HasAVX2
|
||
|
||
// Montgomery multiplication. Sets res = in1 * in2 * R⁻¹ mod p.
|
||
//
|
||
//go:noescape
|
||
func p256Mul(res, in1, in2 *p256Element)
|
||
|
||
// Montgomery square, repeated n times (n >= 1).
|
||
//
|
||
//go:noescape
|
||
func p256Sqr(res, in *p256Element, n int)
|
||
|
||
// Montgomery multiplication by R⁻¹, or 1 outside the domain.
|
||
// Sets res = in * R⁻¹, bringing res out of the Montgomery domain.
|
||
//
|
||
//go:noescape
|
||
func p256FromMont(res, in *p256Element)
|
||
|
||
// If cond is not 0, sets val = -val mod p.
|
||
//
|
||
//go:noescape
|
||
func p256NegCond(val *p256Element, cond int)
|
||
|
||
// If cond is 0, sets res = b, otherwise sets res = a.
|
||
//
|
||
//go:noescape
|
||
func p256MovCond(res, a, b *SM2P256Point, cond int)
|
||
|
||
//go:noescape
|
||
func p256BigToLittle(res *p256Element, in *[32]byte)
|
||
|
||
//go:noescape
|
||
func p256LittleToBig(res *[32]byte, in *p256Element)
|
||
|
||
//go:noescape
|
||
func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
|
||
|
||
//go:noescape
|
||
func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
|
||
|
||
// p256OrdReduce ensures s is in the range [0, ord(G)-1].
|
||
//
|
||
//go:noescape
|
||
func p256OrdReduce(s *p256OrdElement)
|
||
|
||
// p256Table is a table of the first 16 multiples of a point. Points are stored
|
||
// at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15.
|
||
// [0]P is the point at infinity and it's not stored.
|
||
type p256Table [32]SM2P256Point
|
||
|
||
// p256Select sets res to the point at index idx in the table.
|
||
// idx must be in [0, limit-1]. It executes in constant time.
|
||
//
|
||
//go:noescape
|
||
func p256Select(res *SM2P256Point, table *p256Table, idx, limit int)
|
||
|
||
// p256AffinePoint is a point in affine coordinates (x, y). x and y are still
|
||
// Montgomery domain elements. The point can't be the point at infinity.
|
||
type p256AffinePoint struct {
|
||
x, y p256Element
|
||
}
|
||
|
||
// p256AffineTable is a table of the first 32 multiples of a point. Points are
|
||
// stored at an index offset of -1 like in p256Table, and [0]P is not stored.
|
||
type p256AffineTable [32]p256AffinePoint
|
||
|
||
// p256Precomputed is a series of precomputed multiples of G, the canonical
|
||
// generator. The first p256AffineTable contains multiples of G. The second one
|
||
// multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive
|
||
// table is the previous table doubled six times. Six is the width of the
|
||
// sliding window used in p256ScalarMult, and having each table already
|
||
// pre-doubled lets us avoid the doublings between windows entirely. This table
|
||
// MUST NOT be modified, as it aliases into p256PrecomputedEmbed below.
|
||
var p256Precomputed *[43]p256AffineTable
|
||
|
||
//go:embed p256_asm_table.bin
|
||
var p256PrecomputedEmbed string
|
||
|
||
func init() {
|
||
p256PrecomputedPtr := (*unsafe.Pointer)(unsafe.Pointer(&p256PrecomputedEmbed))
|
||
p256Precomputed = (*[43]p256AffineTable)(*p256PrecomputedPtr)
|
||
}
|
||
|
||
// p256SelectAffine sets res to the point at index idx in the table.
|
||
// idx must be in [0, 31]. It executes in constant time.
|
||
//
|
||
//go:noescape
|
||
func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
|
||
|
||
// Point addition with an affine point and constant time conditions.
|
||
// If zero is 0, sets res = in2. If sel is 0, sets res = in1.
|
||
// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2
|
||
//
|
||
//go:noescape
|
||
func p256PointAddAffineAsm(res, in1 *SM2P256Point, in2 *p256AffinePoint, sign, sel, zero int)
|
||
|
||
// Point addition. Sets res = in1 + in2. Returns one if the two input points
|
||
// were equal and zero otherwise. If in1 or in2 are the point at infinity, res
|
||
// and the return value are undefined.
|
||
//
|
||
//go:noescape
|
||
func p256PointAddAsm(res, in1, in2 *SM2P256Point) int
|
||
|
||
// Point doubling. Sets res = in + in. in can be the point at infinity.
|
||
//
|
||
//go:noescape
|
||
func p256PointDoubleAsm(res, in *SM2P256Point)
|
||
|
||
// Point doubling 6 times. in can be the point at infinity.
|
||
//
|
||
//go:noescape
|
||
func p256PointDouble6TimesAsm(res, in *SM2P256Point)
|
||
|
||
// p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the
|
||
// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
|
||
type p256OrdElement [4]uint64
|
||
|
||
// Add sets q = p1 + p2, and returns q. The points may overlap.
|
||
func (q *SM2P256Point) Add(r1, r2 *SM2P256Point) *SM2P256Point {
|
||
var sum, double SM2P256Point
|
||
r1IsInfinity := r1.isInfinity()
|
||
r2IsInfinity := r2.isInfinity()
|
||
pointsEqual := p256PointAddAsm(&sum, r1, r2)
|
||
p256PointDoubleAsm(&double, r1)
|
||
p256MovCond(&sum, &double, &sum, pointsEqual)
|
||
p256MovCond(&sum, r1, &sum, r2IsInfinity)
|
||
p256MovCond(&sum, r2, &sum, r1IsInfinity)
|
||
return q.Set(&sum)
|
||
}
|
||
|
||
// Double sets q = p + p, and returns q. The points may overlap.
|
||
func (q *SM2P256Point) Double(p *SM2P256Point) *SM2P256Point {
|
||
var double SM2P256Point
|
||
p256PointDoubleAsm(&double, p)
|
||
return q.Set(&double)
|
||
}
|
||
|
||
// ScalarBaseMult sets r = scalar * generator, where scalar is a 32-byte big
|
||
// endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult
|
||
// returns an error and the receiver is unchanged.
|
||
func (r *SM2P256Point) ScalarBaseMult(scalar []byte) (*SM2P256Point, error) {
|
||
if len(scalar) != 32 {
|
||
return nil, errors.New("invalid scalar length")
|
||
}
|
||
scalarReversed := new(p256OrdElement)
|
||
p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
|
||
p256OrdReduce(scalarReversed)
|
||
r.p256BaseMult(scalarReversed)
|
||
return r, nil
|
||
}
|
||
|
||
// ScalarMult sets r = scalar * q, where scalar is a 32-byte big endian value,
|
||
// and returns r. If scalar is not 32 bytes long, ScalarBaseMult returns an
|
||
// error and the receiver is unchanged.
|
||
func (r *SM2P256Point) ScalarMult(q *SM2P256Point, scalar []byte) (*SM2P256Point, error) {
|
||
if len(scalar) != 32 {
|
||
return nil, errors.New("invalid scalar length")
|
||
}
|
||
scalarReversed := new(p256OrdElement)
|
||
p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
|
||
p256OrdReduce(scalarReversed)
|
||
r.Set(q).p256ScalarMult(scalarReversed)
|
||
return r, nil
|
||
}
|
||
|
||
// uint64IsZero returns 1 if x is zero and zero otherwise.
|
||
func uint64IsZero(x uint64) int {
|
||
x = ^x
|
||
x &= x >> 32
|
||
x &= x >> 16
|
||
x &= x >> 8
|
||
x &= x >> 4
|
||
x &= x >> 2
|
||
x &= x >> 1
|
||
return int(x & 1)
|
||
}
|
||
|
||
// p256Equal returns 1 if a and b are equal and 0 otherwise.
|
||
func p256Equal(a, b *p256Element) int {
|
||
var acc uint64
|
||
for i := range a {
|
||
acc |= a[i] ^ b[i]
|
||
}
|
||
return uint64IsZero(acc)
|
||
}
|
||
|
||
// isInfinity returns 1 if p is the point at infinity and 0 otherwise.
|
||
func (p *SM2P256Point) isInfinity() int {
|
||
return p256Equal(&p.z, &p256Zero)
|
||
}
|
||
|
||
// Bytes returns the uncompressed or infinity encoding of p, as specified in
|
||
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
|
||
// infinity is shorter than all other encodings.
|
||
func (p *SM2P256Point) Bytes() []byte {
|
||
// This function is outlined to make the allocations inline in the caller
|
||
// rather than happen on the heap.
|
||
var out [p256UncompressedLength]byte
|
||
return p.bytes(&out)
|
||
}
|
||
|
||
func (p *SM2P256Point) bytes(out *[p256UncompressedLength]byte) []byte {
|
||
// The proper representation of the point at infinity is a single zero byte.
|
||
if p.isInfinity() == 1 {
|
||
return append(out[:0], 0)
|
||
}
|
||
|
||
x, y := new(p256Element), new(p256Element)
|
||
p.affineFromMont(x, y)
|
||
|
||
out[0] = 4 // Uncompressed form.
|
||
p256LittleToBig((*[32]byte)(out[1:33]), x)
|
||
p256LittleToBig((*[32]byte)(out[33:65]), y)
|
||
|
||
return out[:]
|
||
}
|
||
|
||
// affineFromMont sets (x, y) to the affine coordinates of p, converted out of the
|
||
// Montgomery domain.
|
||
func (p *SM2P256Point) affineFromMont(x, y *p256Element) {
|
||
p256Inverse(y, &p.z)
|
||
p256Sqr(x, y, 1)
|
||
p256Mul(y, y, x)
|
||
|
||
p256Mul(x, &p.x, x)
|
||
p256Mul(y, &p.y, y)
|
||
|
||
p256FromMont(x, x)
|
||
p256FromMont(y, y)
|
||
}
|
||
|
||
// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
|
||
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
|
||
func (p *SM2P256Point) BytesX() ([]byte, error) {
|
||
// This function is outlined to make the allocations inline in the caller
|
||
// rather than happen on the heap.
|
||
var out [p256ElementLength]byte
|
||
return p.bytesX(&out)
|
||
}
|
||
|
||
func (p *SM2P256Point) bytesX(out *[p256ElementLength]byte) ([]byte, error) {
|
||
if p.isInfinity() == 1 {
|
||
return nil, errors.New("SM2 point is the point at infinity")
|
||
}
|
||
|
||
x := new(p256Element)
|
||
p256Inverse(x, &p.z)
|
||
p256Sqr(x, x, 1)
|
||
p256Mul(x, &p.x, x)
|
||
p256FromMont(x, x)
|
||
p256LittleToBig((*[32]byte)(out[:]), x)
|
||
|
||
return out[:], nil
|
||
}
|
||
|
||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||
// point at infinity is shorter than all other encodings.
|
||
func (p *SM2P256Point) BytesCompressed() []byte {
|
||
// This function is outlined to make the allocations inline in the caller
|
||
// rather than happen on the heap.
|
||
var out [p256CompressedLength]byte
|
||
return p.bytesCompressed(&out)
|
||
}
|
||
|
||
func (p *SM2P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte {
|
||
if p.isInfinity() == 1 {
|
||
return append(out[:0], 0)
|
||
}
|
||
|
||
x, y := new(p256Element), new(p256Element)
|
||
p.affineFromMont(x, y)
|
||
|
||
out[0] = 2 | byte(y[0]&1)
|
||
p256LittleToBig((*[32]byte)(out[1:33]), x)
|
||
|
||
return out[:]
|
||
}
|
||
|
||
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
|
||
func (q *SM2P256Point) Select(p1, p2 *SM2P256Point, cond int) *SM2P256Point {
|
||
p256MovCond(q, p1, p2, cond)
|
||
return q
|
||
}
|
||
|
||
// p256Inverse sets out to in⁻¹ mod p. If in is zero, out will be zero.
|
||
func p256Inverse(out, in *p256Element) {
|
||
// Inversion is calculated through exponentiation by p - 2, per Fermat's
|
||
// little theorem.
|
||
//
|
||
// The sequence of 14 multiplications and 255 squarings is derived from the
|
||
// following addition chain generated with github.com/mmcloughlin/addchain
|
||
// v0.4.0.
|
||
//
|
||
// _10 = 2*1
|
||
// _11 = 1 + _10
|
||
// _110 = 2*_11
|
||
// _111 = 1 + _110
|
||
// _111000 = _111 << 3
|
||
// _111111 = _111 + _111000
|
||
// _1111110 = 2*_111111
|
||
// _1111111 = 1 + _1111110
|
||
// x12 = _1111110 << 5 + _111111
|
||
// x24 = x12 << 12 + x12
|
||
// x31 = x24 << 7 + _1111111
|
||
// i39 = x31 << 2
|
||
// i68 = i39 << 29
|
||
// x62 = x31 + i68
|
||
// i71 = i68 << 2
|
||
// x64 = i39 + i71 + _11
|
||
// i265 = ((i71 << 32 + x64) << 64 + x64) << 94
|
||
// return (x62 + i265) << 2 + 1
|
||
// Allocate Temporaries.
|
||
var (
|
||
t0 = new(p256Element)
|
||
t1 = new(p256Element)
|
||
t2 = new(p256Element)
|
||
)
|
||
// Step 1: z = x^0x2
|
||
//z.Sqr(x)
|
||
p256Sqr(out, in, 1)
|
||
|
||
// Step 2: t0 = x^0x3
|
||
// t0.Mul(x, z)
|
||
p256Mul(t0, in, out)
|
||
|
||
// Step 3: z = x^0x6
|
||
// z.Sqr(t0)
|
||
p256Sqr(out, t0, 1)
|
||
|
||
// Step 4: z = x^0x7
|
||
// z.Mul(x, z)
|
||
p256Mul(out, in, out)
|
||
|
||
// Step 7: t1 = x^0x38
|
||
//t1.Sqr(z)
|
||
//for s := 1; s < 3; s++ {
|
||
// t1.Sqr(t1)
|
||
//}
|
||
p256Sqr(t1, out, 3)
|
||
|
||
// Step 8: t1 = x^0x3f
|
||
//t1.Mul(z, t1)
|
||
p256Mul(t1, out, t1)
|
||
|
||
// Step 9: t2 = x^0x7e
|
||
//t2.Sqr(t1)
|
||
p256Sqr(t2, t1, 1)
|
||
|
||
// Step 10: z = x^0x7f
|
||
//z.Mul(x, t2)
|
||
p256Mul(out, in, t2)
|
||
|
||
// Step 15: t2 = x^0xfc0
|
||
//for s := 0; s < 5; s++ {
|
||
// t2.Sqr(t2)
|
||
//}
|
||
p256Sqr(t2, t2, 5)
|
||
|
||
// Step 16: t1 = x^0xfff
|
||
//t1.Mul(t1, t2)
|
||
p256Mul(t1, t1, t2)
|
||
|
||
// Step 28: t2 = x^0xfff000
|
||
//t2.Sqr(t1)
|
||
//for s := 1; s < 12; s++ {
|
||
// t2.Sqr(t2)
|
||
//}
|
||
p256Sqr(t2, t1, 12)
|
||
|
||
// Step 29: t1 = x^0xffffff
|
||
//t1.Mul(t1, t2)
|
||
p256Mul(t1, t1, t2)
|
||
|
||
// Step 36: t1 = x^0x7fffff80
|
||
//for s := 0; s < 7; s++ {
|
||
// t1.Sqr(t1)
|
||
//}
|
||
p256Sqr(t1, t1, 7)
|
||
|
||
// Step 37: z = x^0x7fffffff
|
||
//z.Mul(z, t1)
|
||
p256Mul(out, out, t1)
|
||
|
||
// Step 39: t2 = x^0x1fffffffc
|
||
//t2.Sqr(z)
|
||
//for s := 1; s < 2; s++ {
|
||
// t2.Sqr(t2)
|
||
//}
|
||
p256Sqr(t2, out, 2)
|
||
|
||
// Step 68: t1 = x^0x3fffffff80000000
|
||
//t1.Sqr(t2)
|
||
//for s := 1; s < 29; s++ {
|
||
// t1.Sqr(t1)
|
||
//}
|
||
p256Sqr(t1, t2, 29)
|
||
|
||
// Step 69: z = x^0x3fffffffffffffff
|
||
//z.Mul(z, t1)
|
||
p256Mul(out, out, t1)
|
||
|
||
// Step 71: t1 = x^0xfffffffe00000000
|
||
//for s := 0; s < 2; s++ {
|
||
// t1.Sqr(t1)
|
||
//}
|
||
p256Sqr(t1, t1, 2)
|
||
|
||
// Step 72: t2 = x^0xfffffffffffffffc
|
||
//t2.Mul(t2, t1)
|
||
p256Mul(t2, t2, t1)
|
||
|
||
// Step 73: t0 = x^0xffffffffffffffff
|
||
//t0.Mul(t0, t2)
|
||
p256Mul(t0, t0, t2)
|
||
|
||
// Step 105: t1 = x^0xfffffffe0000000000000000
|
||
//for s := 0; s < 32; s++ {
|
||
// t1.Sqr(t1)
|
||
//}
|
||
p256Sqr(t1, t1, 32)
|
||
|
||
// Step 106: t1 = x^0xfffffffeffffffffffffffff
|
||
//t1.Mul(t0, t1)
|
||
p256Mul(t1, t0, t1)
|
||
|
||
// Step 170: t1 = x^0xfffffffeffffffffffffffff0000000000000000
|
||
//for s := 0; s < 64; s++ {
|
||
// t1.Sqr(t1)
|
||
//}
|
||
p256Sqr(t1, t1, 64)
|
||
|
||
// Step 171: t0 = x^0xfffffffeffffffffffffffffffffffffffffffff
|
||
//t0.Mul(t0, t1)
|
||
p256Mul(t0, t0, t1)
|
||
|
||
// Step 265: t0 = x^0x3fffffffbfffffffffffffffffffffffffffffffc00000000000000000000000
|
||
//for s := 0; s < 94; s++ {
|
||
// t0.Sqr(t0)
|
||
//}
|
||
p256Sqr(t0, t0, 94)
|
||
|
||
// Step 266: z = x^0x3fffffffbfffffffffffffffffffffffffffffffc00000003fffffffffffffff
|
||
//z.Mul(z, t0)
|
||
p256Mul(out, out, t0)
|
||
|
||
// Step 268: z = x^0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc
|
||
//for s := 0; s < 2; s++ {
|
||
// z.Sqr(z)
|
||
//}
|
||
p256Sqr(out, out, 2)
|
||
|
||
// Step 269: z = x^0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffd
|
||
//z.Mul(x, z)
|
||
p256Mul(out, in, out)
|
||
}
|
||
|
||
// This function takes those six bits as an integer (0 .. 63), writing the
|
||
// recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
|
||
// value, in the range 0 .. 16). Note that this integer essentially provides
|
||
// the input bits "shifted to the left" by one position: for example, the input
|
||
// to compute the least significant recoded digit, given that there's no bit
|
||
// b_-1, has to be b_4 b_3 b_2 b_1 b_0 0.
|
||
//
|
||
// Reference:
|
||
// https://github.com/openssl/openssl/blob/master/crypto/ec/ecp_nistputil.c
|
||
// https://github.com/google/boringssl/blob/master/crypto/fipsmodule/ec/util.c
|
||
func boothW5(in uint) (int, int) {
|
||
var s uint = ^((in >> 5) - 1) // sets all bits to MSB(in), 'in' seen as 6-bit value
|
||
var d uint = (1 << 6) - in - 1 // d = 63 - in, or d = ^in & 0x3f
|
||
d = (d & s) | (in & (^s)) // d = in if in < 2^5; otherwise, d = 63 - in
|
||
d = (d >> 1) + (d & 1) // d = (d + 1) / 2
|
||
return int(d), int(s & 1)
|
||
}
|
||
|
||
func boothW6(in uint) (int, int) {
|
||
var s uint = ^((in >> 6) - 1)
|
||
var d uint = (1 << 7) - in - 1
|
||
d = (d & s) | (in & (^s))
|
||
d = (d >> 1) + (d & 1)
|
||
return int(d), int(s & 1)
|
||
}
|
||
|
||
func (p *SM2P256Point) p256BaseMult(scalar *p256OrdElement) {
|
||
var t0 p256AffinePoint
|
||
|
||
wvalue := (scalar[0] << 1) & 0x7f
|
||
sel, sign := boothW6(uint(wvalue))
|
||
p256SelectAffine(&t0, &p256Precomputed[0], sel)
|
||
p.x, p.y, p.z = t0.x, t0.y, p256One
|
||
p256NegCond(&p.y, sign)
|
||
|
||
index := uint(5)
|
||
zero := sel
|
||
|
||
for i := 1; i < 43; i++ {
|
||
if index >= 192 {
|
||
wvalue = (scalar[3] >> (index & 63)) & 0x7f
|
||
} else if index >= 128 {
|
||
wvalue = ((scalar[2] >> (index & 63)) + (scalar[3] << (64 - (index & 63)))) & 0x7f
|
||
} else if index >= 64 {
|
||
wvalue = ((scalar[1] >> (index & 63)) + (scalar[2] << (64 - (index & 63)))) & 0x7f
|
||
} else {
|
||
wvalue = ((scalar[0] >> (index & 63)) + (scalar[1] << (64 - (index & 63)))) & 0x7f
|
||
}
|
||
index += 6
|
||
sel, sign = boothW6(uint(wvalue))
|
||
p256SelectAffine(&t0, &p256Precomputed[i], sel)
|
||
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
|
||
zero |= sel
|
||
}
|
||
|
||
// If the whole scalar was zero, set to the point at infinity.
|
||
p256MovCond(p, p, NewSM2P256Point(), zero)
|
||
}
|
||
|
||
func (p *SM2P256Point) p256ScalarMult(scalar *p256OrdElement) {
|
||
// precomp is a table of precomputed points that stores powers of p
|
||
// from p^1 to p^32.
|
||
var precomp p256Table
|
||
var t0, t1 SM2P256Point
|
||
|
||
// Prepare the table
|
||
precomp[0] = *p // 1
|
||
|
||
p256PointDoubleAsm(&precomp[1], p) //2
|
||
p256PointAddAsm(&precomp[2], &precomp[1], p) //3
|
||
p256PointDoubleAsm(&precomp[3], &precomp[1]) //4
|
||
p256PointAddAsm(&precomp[4], &precomp[3], p) //5
|
||
p256PointDoubleAsm(&precomp[5], &precomp[2]) //6
|
||
p256PointAddAsm(&precomp[6], &precomp[5], p) //7
|
||
p256PointDoubleAsm(&precomp[7], &precomp[3]) //8
|
||
p256PointAddAsm(&precomp[8], &precomp[7], p) //9
|
||
p256PointDoubleAsm(&precomp[9], &precomp[4]) //10
|
||
p256PointAddAsm(&precomp[10], &precomp[9], p) //11
|
||
p256PointDoubleAsm(&precomp[11], &precomp[5]) //12
|
||
p256PointAddAsm(&precomp[12], &precomp[11], p) //13
|
||
p256PointDoubleAsm(&precomp[13], &precomp[6]) //14
|
||
p256PointAddAsm(&precomp[14], &precomp[13], p) //15
|
||
p256PointDoubleAsm(&precomp[15], &precomp[7]) //16
|
||
|
||
p256PointAddAsm(&precomp[16], &precomp[15], p) //17
|
||
p256PointDoubleAsm(&precomp[17], &precomp[8]) //18
|
||
p256PointAddAsm(&precomp[18], &precomp[17], p) //19
|
||
p256PointDoubleAsm(&precomp[19], &precomp[9]) //20
|
||
p256PointAddAsm(&precomp[20], &precomp[19], p) //21
|
||
p256PointDoubleAsm(&precomp[21], &precomp[10]) //22
|
||
p256PointAddAsm(&precomp[22], &precomp[21], p) //23
|
||
p256PointDoubleAsm(&precomp[23], &precomp[11]) //24
|
||
p256PointAddAsm(&precomp[24], &precomp[23], p) //25
|
||
p256PointDoubleAsm(&precomp[25], &precomp[12]) //26
|
||
p256PointAddAsm(&precomp[26], &precomp[25], p) //27
|
||
p256PointDoubleAsm(&precomp[27], &precomp[13]) //28
|
||
p256PointAddAsm(&precomp[28], &precomp[27], p) //29
|
||
p256PointDoubleAsm(&precomp[29], &precomp[14]) //30
|
||
p256PointAddAsm(&precomp[30], &precomp[29], p) //31
|
||
p256PointDoubleAsm(&precomp[31], &precomp[15]) //32
|
||
|
||
// Start scanning the window from top bit
|
||
index := uint(251)
|
||
var sel, sign int
|
||
|
||
wvalue := (scalar[index/64] >> (index % 64)) & 0x7f
|
||
sel, _ = boothW6(uint(wvalue))
|
||
|
||
p256Select(p, &precomp, sel, 32)
|
||
zero := sel
|
||
|
||
for index > 5 {
|
||
index -= 6
|
||
|
||
p256PointDouble6TimesAsm(p, p)
|
||
|
||
if index >= 192 {
|
||
wvalue = (scalar[3] >> (index & 63)) & 0x7f
|
||
} else if index >= 128 {
|
||
wvalue = ((scalar[2] >> (index & 63)) + (scalar[3] << (64 - (index & 63)))) & 0x7f
|
||
} else if index >= 64 {
|
||
wvalue = ((scalar[1] >> (index & 63)) + (scalar[2] << (64 - (index & 63)))) & 0x7f
|
||
} else {
|
||
wvalue = ((scalar[0] >> (index & 63)) + (scalar[1] << (64 - (index & 63)))) & 0x7f
|
||
}
|
||
|
||
sel, sign = boothW6(uint(wvalue))
|
||
|
||
p256Select(&t0, &precomp, sel, 32)
|
||
p256NegCond(&t0.y, sign)
|
||
p256PointAddAsm(&t1, p, &t0)
|
||
p256MovCond(&t1, &t1, p, sel)
|
||
p256MovCond(p, &t1, &t0, zero)
|
||
zero |= sel
|
||
}
|
||
p256PointDouble6TimesAsm(p, p)
|
||
|
||
wvalue = (scalar[0] << 1) & 0x7f
|
||
sel, sign = boothW6(uint(wvalue))
|
||
|
||
p256Select(&t0, &precomp, sel, 32)
|
||
p256NegCond(&t0.y, sign)
|
||
p256PointAddAsm(&t1, p, &t0)
|
||
p256MovCond(&t1, &t1, p, sel)
|
||
p256MovCond(p, &t1, &t0, zero)
|
||
}
|