gmsm/zuc/eia256_asm_arm64.s

257 lines
8.5 KiB
ArmAsm

//go:build arm64 && !purego
// +build arm64,!purego
#include "textflag.h"
DATA bit_reverse_table_l<>+0x00(SB)/8, $0x0e060a020c040800
DATA bit_reverse_table_l<>+0x08(SB)/8, $0x0f070b030d050901
GLOBL bit_reverse_table_l<>(SB), RODATA, $16
DATA bit_reverse_table_h<>+0x00(SB)/8, $0xe060a020c0408000
DATA bit_reverse_table_h<>+0x08(SB)/8, $0xf070b030d0509010
GLOBL bit_reverse_table_h<>(SB), RODATA, $16
DATA bit_reverse_and_table<>+0x00(SB)/8, $0x0f0f0f0f0f0f0f0f
DATA bit_reverse_and_table<>+0x08(SB)/8, $0x0f0f0f0f0f0f0f0f
GLOBL bit_reverse_and_table<>(SB), RODATA, $16
DATA shuf_mask_dw0_0_dw1_0<>+0x00(SB)/8, $0xffffffff03020100
DATA shuf_mask_dw0_0_dw1_0<>+0x08(SB)/8, $0xffffffff07060504
GLOBL shuf_mask_dw0_0_dw1_0<>(SB), RODATA, $16
DATA shuf_mask_dw2_0_dw3_0<>+0x00(SB)/8, $0xffffffff0b0a0908
DATA shuf_mask_dw2_0_dw3_0<>+0x08(SB)/8, $0xffffffff0f0e0d0c
GLOBL shuf_mask_dw2_0_dw3_0<>(SB), RODATA, $16
#define AX R2
#define BX R3
#define CX R4
#define DX R5
#define XTMP1 V1
#define XTMP2 V2
#define XTMP3 V3
#define XTMP4 V4
#define XTMP5 V5
#define XTMP6 V6
#define XDATA V7
#define XDIGEST V8
#define KS_L V9
#define KS_M1 V10
#define KS_M2 V11
#define KS_H V12
#define BIT_REV_TAB_L V20
#define BIT_REV_TAB_H V21
#define BIT_REV_AND_TAB V22
#define SHUF_MASK_DW0_DW1 V23
#define SHUF_MASK_DW2_DW3 V24
#define LOAD_GLOBAL_DATA() \
LDP bit_reverse_table_l<>(SB), (R0, R1) \
VMOV R0, BIT_REV_TAB_L.D[0] \
VMOV R1, BIT_REV_TAB_L.D[1] \
LDP bit_reverse_table_h<>(SB), (R0, R1) \
VMOV R0, BIT_REV_TAB_H.D[0] \
VMOV R1, BIT_REV_TAB_H.D[1] \
LDP bit_reverse_and_table<>(SB), (R0, R1) \
VMOV R0, BIT_REV_AND_TAB.D[0] \
VMOV R1, BIT_REV_AND_TAB.D[1] \
LDP shuf_mask_dw0_0_dw1_0<>(SB), (R0, R1) \
VMOV R0, SHUF_MASK_DW0_DW1.D[0] \
VMOV R1, SHUF_MASK_DW0_DW1.D[1] \
LDP shuf_mask_dw2_0_dw3_0<>(SB), (R0, R1) \
VMOV R0, SHUF_MASK_DW2_DW3.D[0] \
VMOV R1, SHUF_MASK_DW2_DW3.D[1]
// func eia256RoundTag8(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag8(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
VAND BIT_REV_AND_TAB.B16, XDATA.B16, XTMP3.B16
VUSHR $4, XDATA.S4, XTMP1.S4
VAND BIT_REV_AND_TAB.B16, XTMP1.B16, XTMP1.B16
VTBL XTMP3.B16, [BIT_REV_TAB_H.B16], XTMP3.B16
VTBL XTMP1.B16, [BIT_REV_TAB_L.B16], XTMP1.B16
VEOR XTMP1.B16, XTMP3.B16, XTMP3.B16 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup KS
VLD1 (BX), [XTMP1.B16, XTMP2.B16]
VST1 [XTMP2.B16], (BX) // Copy last 16 bytes of KS to the front
// TODO: Any better solution???
VMOV XTMP1.S[1], KS_L.S[0]
VMOV XTMP1.S[0], KS_L.S[1]
VMOV XTMP1.S[2], KS_L.S[2]
VMOV XTMP1.S[1], KS_L.S[3] // KS bits [63:32 31:0 95:64 63:32]
VMOV XTMP1.S[3], KS_M1.S[0]
VMOV XTMP1.S[2], KS_M1.S[1]
VMOV XTMP2.S[0], KS_M1.S[2]
VMOV XTMP1.S[3], KS_M1.S[3] // KS bits [127:96 95:64 159:128 127:96]
VMOV XTMP2.S[1], KS_M2.S[0]
VMOV XTMP2.S[0], KS_M2.S[1]
VMOV XTMP2.S[2], KS_M2.S[2]
VMOV XTMP2.S[1], KS_M2.S[3] // KS bits [191:160 159:128 223:192 191:160]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XTMP3.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XTMP3.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMULL KS_L.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_L.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M1.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M1.D2, XTMP2.D2, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
// Move previous result to low 32 bits and XOR with previous digest
VMOV XTMP3.S[1], XDIGEST.S[0]
// Prepare data and calculate bits 63-32 of tag
VEXT $8, KS_L.B16, KS_L.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M1.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP1.B16
VPMULL XTMP1.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, XTMP1.B16
VPMULL KS_M2.D1, XTMP1.D1, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[1]
VMOV XDIGEST.D[0], R10
MOVD (AX), R11
EOR R10, R11
MOVD R11, (AX)
RET
// func eia256RoundTag16(t *uint32, keyStream *uint32, p *byte)
TEXT ·eia256RoundTag16(SB),NOSPLIT,$0
MOVD t+0(FP), AX
MOVD ks+8(FP), BX
MOVD p+16(FP), CX
LOAD_GLOBAL_DATA()
// Reverse data bytes
VLD1 (CX), [XDATA.B16]
VAND BIT_REV_AND_TAB.B16, XDATA.B16, XTMP3.B16
VUSHR $4, XDATA.S4, XTMP1.S4
VAND BIT_REV_AND_TAB.B16, XTMP1.B16, XTMP1.B16
VTBL XTMP3.B16, [BIT_REV_TAB_H.B16], XTMP3.B16
VTBL XTMP1.B16, [BIT_REV_TAB_L.B16], XTMP1.B16
VEOR XTMP1.B16, XTMP3.B16, XTMP3.B16 // XTMP3 - bit reverse data bytes
// ZUC authentication part, 4x32 data bits
// setup KS
VLD1 (BX), [XTMP1.B16, XTMP2.B16]
VST1 [XTMP2.B16], (BX) // Copy last 16 bytes of KS to the front
// TODO: Any better solution??? We can use VTBL, but there are no performance imprvoement if we can't reuse MASK constant
VMOV XTMP1.S[1], KS_L.S[0]
VMOV XTMP1.S[0], KS_L.S[1]
VMOV XTMP1.S[2], KS_L.S[2]
VMOV XTMP1.S[1], KS_L.S[3] // KS bits [63:32 31:0 95:64 63:32]
VMOV XTMP1.S[3], KS_M1.S[0]
VMOV XTMP1.S[2], KS_M1.S[1]
VMOV XTMP2.S[0], KS_M1.S[2]
VMOV XTMP1.S[3], KS_M1.S[3] // KS bits [127:96 95:64 159:128 127:96]
VMOV XTMP2.S[1], KS_M2.S[0]
VMOV XTMP2.S[0], KS_M2.S[1]
VMOV XTMP2.S[2], KS_M2.S[2]
VMOV XTMP2.S[1], KS_M2.S[3] // KS bits [191:160 159:128 223:192 191:160]
VMOV XTMP2.S[3], KS_H.S[0]
VMOV XTMP2.S[2], KS_H.S[1]
VMOV XTMP2.S[3], KS_H.S[2]
VMOV XTMP2.S[2], KS_H.S[3] // KS bits [255:224 223:192 255:224 223:192]
// setup DATA
VTBL SHUF_MASK_DW0_DW1.B16, [XTMP3.B16], XTMP1.B16 // XTMP1 - Data bits [31:0 0s 63:32 0s]
VTBL SHUF_MASK_DW2_DW3.B16, [XTMP3.B16], XTMP2.B16 // XTMP2 - Data bits [95:64 0s 127:96 0s]
// clmul
// xor the results from 4 32-bit words together
// Calculate lower 32 bits of tag
VPMULL KS_L.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_L.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M1.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M1.D2, XTMP2.D2, XTMP6.Q1
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
// Move previous result to low 32 bits and XOR with previous digest
VMOV XTMP3.S[1], XDIGEST.S[0]
// Prepare data and calculate bits 63-32 of tag
VEXT $8, KS_L.B16, KS_L.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M1.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP6.B16
VPMULL XTMP6.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, KS_L.B16
VPMULL KS_M2.D1, KS_L.D1, XTMP6.Q1
// XOR all the products and keep only 32-63 bits
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[1]
// Prepare data and calculate bits 95-64 of tag
VPMULL KS_M1.D1, XTMP1.D1, XTMP3.Q1
VPMULL2 KS_M1.D2, XTMP1.D2, XTMP4.Q1
VPMULL KS_M2.D1, XTMP2.D1, XTMP5.Q1
VPMULL2 KS_M2.D2, XTMP2.D2, XTMP6.Q1
// XOR all the products and move bits 63-32 to bits 95-64
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[2]
// Prepare data and calculate bits 127-96 of tag
VEXT $8, KS_M1.B16, KS_M1.B16, XTMP5.B16
VPMULL XTMP5.D1, XTMP1.D1, XTMP3.Q1
VEXT $8, XTMP1.B16, XTMP1.B16, XTMP5.B16
VPMULL KS_M2.D1, XTMP5.D1, XTMP4.Q1
VEXT $8, KS_M2.B16, KS_M2.B16, XTMP6.B16
VPMULL XTMP6.D1, XTMP2.D1, XTMP5.Q1
VEXT $8, XTMP2.B16, XTMP2.B16, KS_L.B16
VPMULL KS_H.D1, KS_L.D1, XTMP6.Q1
// XOR all the products and move bits 63-32 to bits 127-96
VEOR XTMP3.B16, XTMP4.B16, XTMP3.B16
VEOR XTMP5.B16, XTMP6.B16, XTMP5.B16
VEOR XTMP3.B16, XTMP5.B16, XTMP3.B16
VMOV XTMP3.S[1], XDIGEST.S[3]
VLD1 (AX), [XTMP1.B16]
VEOR XTMP1.B16, XDIGEST.B16, XDIGEST.B16
VST1 [XDIGEST.B16], (AX)
RET