gmsm/sm9/bn256/gfp2_g1_generic.go

194 lines
3.8 KiB
Go

//go:build (!amd64) || purego
// +build !amd64 purego
package bn256
func gfp2Mul(c, a, b *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
v0, v1 := &gfP{}, &gfP{}
gfpMul(v0, &a.y, &b.y)
gfpMul(v1, &a.x, &b.x)
gfpAdd(tx, &a.x, &a.y)
gfpAdd(ty, &b.x, &b.y)
gfpMul(tx, tx, ty)
gfpSub(tx, tx, v0)
gfpSub(tx, tx, v1)
gfpSub(ty, v0, v1)
gfpSub(ty, ty, v1)
gfp2Copy(c, tmp)
}
func gfp2MulU(c, a, b *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
v0, v1 := &gfP{}, &gfP{}
gfpMul(v0, &a.y, &b.y)
gfpMul(v1, &a.x, &b.x)
gfpAdd(tx, &a.x, &a.y)
gfpAdd(ty, &b.x, &b.y)
gfpMul(ty, tx, ty)
gfpSub(ty, ty, v0)
gfpSub(ty, ty, v1)
gfpDouble(ty, ty)
gfpNeg(ty, ty)
gfpSub(tx, v0, v1)
gfpSub(tx, tx, v1)
gfp2Copy(c, tmp)
}
func gfp2Square(c, a *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
gfpAdd(ty, &a.x, &a.y)
gfpDouble(tx, &a.x)
gfpSub(tx, &a.y, tx)
gfpMul(ty, tx, ty)
gfpMul(tx, &a.x, &a.y)
gfpAdd(ty, tx, ty)
gfpDouble(tx, tx)
gfp2Copy(c, tmp)
}
func gfp2SquareU(c, a *gfP2) {
tmp := &gfP2{}
tx := &tmp.x
ty := &tmp.y
gfpAdd(tx, &a.x, &a.y)
gfpDouble(ty, &a.x)
gfpSub(ty, &a.y, ty)
gfpMul(tx, tx, ty)
gfpMul(ty, &a.x, &a.y)
gfpAdd(tx, tx, ty)
gfpDouble(ty, ty)
gfpDouble(ty, ty)
gfpNeg(ty, ty)
gfp2Copy(c, tmp)
}
func curvePointDouble(c, a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpSqr(A, &a.x, 1)
gfpSqr(B, &a.y, 1)
gfpSqr(C, B, 1)
t := &gfP{}
gfpAdd(B, &a.x, B)
gfpSqr(t, B, 1)
gfpSub(B, t, A)
gfpSub(t, B, C)
d, e := &gfP{}, &gfP{}
gfpDouble(d, t)
gfpDouble(B, A)
gfpAdd(e, B, A)
gfpSqr(A, e, 1)
gfpDouble(B, d)
gfpSub(&c.x, A, B)
gfpMul(&c.z, &a.y, &a.z)
gfpDouble(&c.z, &c.z)
gfpDouble(B, C)
gfpDouble(t, B)
gfpDouble(B, t)
gfpSub(&c.y, d, &c.x)
gfpMul(t, e, &c.y)
gfpSub(&c.y, t, B)
}
func curvePointAdd(c, a, b *curvePoint) int {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
var pointEq int
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpSqr(z12, &a.z, 1)
gfpSqr(z22, &b.z, 1)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
gfpDouble(t, h)
// i = 4h²
i := &gfP{}
gfpSqr(i, t, 1)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
pointEq = h.Equal(zero) & t.Equal(zero)
r := &gfP{}
gfpDouble(r, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpSqr(t4, r, 1)
gfpDouble(t, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpDouble(t6, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpSqr(t4, t, 1) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
return pointEq
}