mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-22 02:06:18 +08:00
1078 lines
31 KiB
Go
1078 lines
31 KiB
Go
// Package sm2 implements ShangMi(SM) sm2 digital signature, public key encryption and key exchange algorithms.
|
|
package sm2
|
|
|
|
// Further references:
|
|
// [NSA]: Suite B implementer's guide to FIPS 186-3
|
|
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.4503&rep=rep1&type=pdf
|
|
// [SECG]: SECG, SEC1
|
|
// http://www.secg.org/sec1-v2.pdf
|
|
// [GM/T]: SM2 GB/T 32918.2-2016, GB/T 32918.4-2016
|
|
//
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
_subtle "crypto/subtle"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
"sync"
|
|
|
|
"github.com/emmansun/gmsm/ecdh"
|
|
"github.com/emmansun/gmsm/internal/bigmod"
|
|
"github.com/emmansun/gmsm/internal/randutil"
|
|
_sm2ec "github.com/emmansun/gmsm/internal/sm2ec"
|
|
"github.com/emmansun/gmsm/internal/subtle"
|
|
"github.com/emmansun/gmsm/sm2/sm2ec"
|
|
"github.com/emmansun/gmsm/sm3"
|
|
"golang.org/x/crypto/cryptobyte"
|
|
"golang.org/x/crypto/cryptobyte/asn1"
|
|
)
|
|
|
|
const (
|
|
uncompressed byte = 0x04
|
|
compressed02 byte = 0x02
|
|
compressed03 byte = compressed02 | 0x01
|
|
hybrid06 byte = 0x06
|
|
hybrid07 byte = hybrid06 | 0x01
|
|
)
|
|
|
|
// PrivateKey represents an ECDSA SM2 private key.
|
|
// It implemented both crypto.Decrypter and crypto.Signer interfaces.
|
|
type PrivateKey struct {
|
|
ecdsa.PrivateKey
|
|
// inverseOfKeyPlus1 is set under inverseOfKeyPlus1Once
|
|
inverseOfKeyPlus1 *bigmod.Nat
|
|
inverseOfKeyPlus1Once sync.Once
|
|
}
|
|
|
|
type pointMarshalMode byte
|
|
|
|
const (
|
|
//MarshalUncompressed uncompressed mashal mode
|
|
MarshalUncompressed pointMarshalMode = iota
|
|
//MarshalCompressed compressed mashal mode
|
|
MarshalCompressed
|
|
//MarshalHybrid hybrid mashal mode
|
|
MarshalHybrid
|
|
)
|
|
|
|
type ciphertextSplicingOrder byte
|
|
|
|
const (
|
|
C1C3C2 ciphertextSplicingOrder = iota
|
|
C1C2C3
|
|
)
|
|
|
|
type ciphertextEncoding byte
|
|
|
|
const (
|
|
ENCODING_PLAIN ciphertextEncoding = iota
|
|
ENCODING_ASN1
|
|
)
|
|
|
|
// EncrypterOpts encryption options
|
|
type EncrypterOpts struct {
|
|
ciphertextEncoding ciphertextEncoding
|
|
pointMarshalMode pointMarshalMode
|
|
ciphertextSplicingOrder ciphertextSplicingOrder
|
|
}
|
|
|
|
// DecrypterOpts decryption options
|
|
type DecrypterOpts struct {
|
|
ciphertextEncoding ciphertextEncoding
|
|
cipherTextSplicingOrder ciphertextSplicingOrder
|
|
}
|
|
|
|
// NewPlainEncrypterOpts creates a SM2 non-ASN1 encrypter options.
|
|
func NewPlainEncrypterOpts(marhsalMode pointMarshalMode, splicingOrder ciphertextSplicingOrder) *EncrypterOpts {
|
|
return &EncrypterOpts{ENCODING_PLAIN, marhsalMode, splicingOrder}
|
|
}
|
|
|
|
// NewPlainDecrypterOpts creates a SM2 non-ASN1 decrypter options.
|
|
func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts {
|
|
return &DecrypterOpts{ENCODING_PLAIN, splicingOrder}
|
|
}
|
|
|
|
func toBytes(curve elliptic.Curve, value *big.Int) []byte {
|
|
byteLen := (curve.Params().BitSize + 7) >> 3
|
|
result := make([]byte, byteLen)
|
|
value.FillBytes(result)
|
|
return result
|
|
}
|
|
|
|
var defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2}
|
|
|
|
var ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2}
|
|
|
|
var ASN1DecrypterOpts = &DecrypterOpts{ENCODING_ASN1, C1C3C2}
|
|
|
|
// directSigning is a standard Hash value that signals that no pre-hashing
|
|
// should be performed.
|
|
var directSigning crypto.Hash = 0
|
|
|
|
// Signer SM2 special signer
|
|
type Signer interface {
|
|
SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error)
|
|
}
|
|
|
|
// SM2SignerOption implements crypto.SignerOpts interface.
|
|
// It is specific for SM2, used in private key's Sign method.
|
|
type SM2SignerOption struct {
|
|
uid []byte
|
|
forceGMSign bool
|
|
}
|
|
|
|
// NewSM2SignerOption creates a SM2 specific signer option.
|
|
// forceGMSign - if use GM specific sign logic, if yes, should pass raw message to sign.
|
|
// uid - if forceGMSign is true, then you can pass uid, if no uid is provided, system will use default one.
|
|
func NewSM2SignerOption(forceGMSign bool, uid []byte) *SM2SignerOption {
|
|
opt := &SM2SignerOption{
|
|
uid: uid,
|
|
forceGMSign: forceGMSign,
|
|
}
|
|
if forceGMSign && len(uid) == 0 {
|
|
opt.uid = defaultUID
|
|
}
|
|
return opt
|
|
}
|
|
|
|
// DefaultSM2SignerOpts uses default UID and forceGMSign is true.
|
|
var DefaultSM2SignerOpts = NewSM2SignerOption(true, nil)
|
|
|
|
func (*SM2SignerOption) HashFunc() crypto.Hash {
|
|
return directSigning
|
|
}
|
|
|
|
// FromECPrivateKey convert an ecdsa private key to SM2 private key.
|
|
func (priv *PrivateKey) FromECPrivateKey(key *ecdsa.PrivateKey) (*PrivateKey, error) {
|
|
if key.Curve != sm2ec.P256() {
|
|
return nil, errors.New("sm2: it's NOT a sm2 curve private key")
|
|
}
|
|
priv.PrivateKey = *key
|
|
return priv, nil
|
|
}
|
|
|
|
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
|
|
xx, ok := x.(*PrivateKey)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
|
|
}
|
|
|
|
// bigIntEqual reports whether a and b are equal leaking only their bit length
|
|
// through timing side-channels.
|
|
func bigIntEqual(a, b *big.Int) bool {
|
|
return _subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
|
|
}
|
|
|
|
// Sign signs digest with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016.
|
|
// The opts argument is currently used for SM2SignerOption checking only.
|
|
// If the opts argument is SM2SignerOption and its ForceGMSign is true,
|
|
// digest argument will be treated as raw data and UID will be taken from opts.
|
|
//
|
|
// This method implements crypto.Signer, which is an interface to support keys
|
|
// where the private part is kept in, for example, a hardware module.
|
|
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
|
|
return SignASN1(rand, priv, digest, opts)
|
|
}
|
|
|
|
// SignWithSM2 signs uid, msg with priv, reading randomness from rand. Compliance with GB/T 32918.2-2016.
|
|
// Deprecated: please use Sign method directly.
|
|
func (priv *PrivateKey) SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) {
|
|
return priv.Sign(rand, msg, NewSM2SignerOption(true, uid))
|
|
}
|
|
|
|
// Decrypt decrypts ciphertext msg to plaintext.
|
|
// The opts argument should be appropriate for the primitive used.
|
|
// Compliance with GB/T 32918.4-2016 chapter 7.
|
|
func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
|
|
var sm2Opts *DecrypterOpts
|
|
sm2Opts, _ = opts.(*DecrypterOpts)
|
|
return decrypt(priv, msg, sm2Opts)
|
|
}
|
|
|
|
const maxRetryLimit = 100
|
|
|
|
var (
|
|
errCiphertextTooShort = errors.New("sm2: ciphertext too short")
|
|
)
|
|
|
|
// EncryptASN1 sm2 encrypt and output ASN.1 result, compliance with GB/T 32918.4-2016.
|
|
//
|
|
// The random parameter is used as a source of entropy to ensure that
|
|
// encrypting the same message twice doesn't result in the same ciphertext.
|
|
// Most applications should use [crypto/rand.Reader] as random.
|
|
func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) {
|
|
return Encrypt(random, pub, msg, ASN1EncrypterOpts)
|
|
}
|
|
|
|
// Encrypt sm2 encrypt implementation, compliance with GB/T 32918.4-2016.
|
|
//
|
|
// The random parameter is used as a source of entropy to ensure that
|
|
// encrypting the same message twice doesn't result in the same ciphertext.
|
|
// Most applications should use [crypto/rand.Reader] as random.
|
|
func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
|
//A3, requirement is to check if h*P is infinite point, h is 1
|
|
if pub.X.Sign() == 0 && pub.Y.Sign() == 0 {
|
|
return nil, errors.New("sm2: public key point is the infinity")
|
|
}
|
|
if len(msg) == 0 {
|
|
return nil, nil
|
|
}
|
|
if opts == nil {
|
|
opts = defaultEncrypterOpts
|
|
}
|
|
switch pub.Curve.Params() {
|
|
case P256().Params():
|
|
return encryptSM2EC(p256(), pub, random, msg, opts)
|
|
default:
|
|
return encryptLegacy(random, pub, msg, opts)
|
|
}
|
|
}
|
|
|
|
func encryptSM2EC(c *sm2Curve, pub *ecdsa.PublicKey, random io.Reader, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
|
Q, err := c.pointFromAffine(pub.X, pub.Y)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var retryCount int = 0
|
|
for {
|
|
k, C1, err := randomPoint(c, random, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
C2, err := Q.ScalarMult(Q, k.Bytes(c.N))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
C2Bytes := C2.Bytes()[1:]
|
|
c2 := sm3.Kdf(C2Bytes, len(msg))
|
|
if subtle.ConstantTimeAllZero(c2) == 1 {
|
|
retryCount++
|
|
if retryCount > maxRetryLimit {
|
|
return nil, fmt.Errorf("sm2: A5, failed to calculate valid t, tried %v times", retryCount)
|
|
}
|
|
continue
|
|
}
|
|
//A6, C2 = M + t;
|
|
subtle.XORBytes(c2, msg, c2)
|
|
|
|
//A7, C3 = hash(x2||M||y2)
|
|
md := sm3.New()
|
|
md.Write(C2Bytes[:len(C2Bytes)/2])
|
|
md.Write(msg)
|
|
md.Write(C2Bytes[len(C2Bytes)/2:])
|
|
c3 := md.Sum(nil)
|
|
|
|
if opts.ciphertextEncoding == ENCODING_PLAIN {
|
|
return encodingCiphertext(opts, C1, c2, c3)
|
|
}
|
|
return encodingCiphertextASN1(C1, c2, c3)
|
|
}
|
|
}
|
|
|
|
func encodingCiphertext(opts *EncrypterOpts, C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) {
|
|
var c1 []byte
|
|
switch opts.pointMarshalMode {
|
|
case MarshalCompressed:
|
|
c1 = C1.BytesCompressed()
|
|
default:
|
|
c1 = C1.Bytes()
|
|
}
|
|
|
|
if opts.ciphertextSplicingOrder == C1C3C2 {
|
|
// c1 || c3 || c2
|
|
return append(append(c1, c3...), c2...), nil
|
|
}
|
|
// c1 || c2 || c3
|
|
return append(append(c1, c2...), c3...), nil
|
|
}
|
|
|
|
func encodingCiphertextASN1(C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) {
|
|
c1 := C1.Bytes()
|
|
var b cryptobyte.Builder
|
|
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
|
addASN1IntBytes(b, c1[1:len(c1)/2+1])
|
|
addASN1IntBytes(b, c1[len(c1)/2+1:])
|
|
b.AddASN1OctetString(c3)
|
|
b.AddASN1OctetString(c2)
|
|
})
|
|
return b.Bytes()
|
|
}
|
|
|
|
// GenerateKey generates a new SM2 private key.
|
|
//
|
|
// Most applications should use [crypto/rand.Reader] as rand. Note that the
|
|
// returned key does not depend deterministically on the bytes read from rand,
|
|
// and may change between calls and/or between versions.
|
|
//
|
|
// According GB/T 32918.1-2016, the private key must be in [1, n-2].
|
|
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
|
|
randutil.MaybeReadByte(rand)
|
|
|
|
c := p256()
|
|
k, Q, err := randomPoint(c, rand, true)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
priv := new(PrivateKey)
|
|
priv.PublicKey.Curve = c.curve
|
|
priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
|
|
priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return priv, nil
|
|
}
|
|
|
|
// NewPrivateKey checks that key is valid and returns a SM2 PrivateKey.
|
|
//
|
|
// key - the private key byte slice, the length must be 32 for SM2.
|
|
//
|
|
// According GB/T 32918.1-2016, the private key must be in [1, n-2].
|
|
func NewPrivateKey(key []byte) (*PrivateKey, error) {
|
|
c := p256()
|
|
if len(key) != c.N.Size() {
|
|
return nil, errors.New("sm2: invalid private key size")
|
|
}
|
|
k, err := bigmod.NewNat().SetBytes(key, c.N)
|
|
if err != nil || k.IsZero() == 1 || k.Equal(c.nMinus1) == 1 {
|
|
return nil, errInvalidPrivateKey
|
|
}
|
|
p, err := c.newPoint().ScalarBaseMult(k.Bytes(c.N))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
priv := new(PrivateKey)
|
|
priv.PublicKey.Curve = c.curve
|
|
priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
|
|
priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(p)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return priv, nil
|
|
}
|
|
|
|
// NewPrivateKeyFromInt checks that key is valid and returns a SM2 PrivateKey.
|
|
func NewPrivateKeyFromInt(key *big.Int) (*PrivateKey, error) {
|
|
if key == nil {
|
|
return nil, errors.New("sm2: invalid private key size")
|
|
}
|
|
keyBytes := make([]byte, p256().N.Size())
|
|
return NewPrivateKey(key.FillBytes(keyBytes))
|
|
}
|
|
|
|
// NewPublicKey checks that key is valid and returns a PublicKey.
|
|
//
|
|
// According GB/T 32918.1-2016, the private key must be in [1, n-2].
|
|
func NewPublicKey(key []byte) (*ecdsa.PublicKey, error) {
|
|
c := p256()
|
|
// Reject the point at infinity and compressed encodings.
|
|
if len(key) == 0 || key[0] != 4 {
|
|
return nil, errors.New("sm2: invalid public key")
|
|
}
|
|
// SetBytes also checks that the point is on the curve.
|
|
p, err := c.newPoint().SetBytes(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
k := new(ecdsa.PublicKey)
|
|
k.Curve = c.curve
|
|
k.X, k.Y, err = c.pointToAffine(p)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return k, nil
|
|
}
|
|
|
|
// Decrypt sm2 decrypt implementation by default DecrypterOpts{C1C3C2}.
|
|
// Compliance with GB/T 32918.4-2016.
|
|
func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
|
return decrypt(priv, ciphertext, nil)
|
|
}
|
|
|
|
// ErrDecryption represents a failure to decrypt a message.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
var ErrDecryption = errors.New("sm2: decryption error")
|
|
|
|
func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
|
ciphertextLen := len(ciphertext)
|
|
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
|
return nil, errCiphertextTooShort
|
|
}
|
|
switch priv.Curve.Params() {
|
|
case P256().Params():
|
|
return decryptSM2EC(p256(), priv, ciphertext, opts)
|
|
default:
|
|
return decryptLegacy(priv, ciphertext, opts)
|
|
}
|
|
}
|
|
|
|
func decryptSM2EC(c *sm2Curve, priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
|
C1, c2, c3, err := parseCiphertext(c, ciphertext, opts)
|
|
if err != nil {
|
|
return nil, ErrDecryption
|
|
}
|
|
d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
|
|
if err != nil {
|
|
return nil, ErrDecryption
|
|
}
|
|
|
|
C2, err := C1.ScalarMult(C1, d.Bytes(c.N))
|
|
if err != nil {
|
|
return nil, ErrDecryption
|
|
}
|
|
C2Bytes := C2.Bytes()[1:]
|
|
msgLen := len(c2)
|
|
msg := sm3.Kdf(C2Bytes, msgLen)
|
|
if subtle.ConstantTimeAllZero(c2) == 1 {
|
|
return nil, ErrDecryption
|
|
}
|
|
|
|
//B5, calculate msg = c2 ^ t
|
|
subtle.XORBytes(msg, c2, msg)
|
|
|
|
md := sm3.New()
|
|
md.Write(C2Bytes[:len(C2Bytes)/2])
|
|
md.Write(msg)
|
|
md.Write(C2Bytes[len(C2Bytes)/2:])
|
|
u := md.Sum(nil)
|
|
|
|
if _subtle.ConstantTimeCompare(u, c3) == 1 {
|
|
return msg, nil
|
|
}
|
|
return nil, ErrDecryption
|
|
}
|
|
|
|
func parseCiphertext(c *sm2Curve, ciphertext []byte, opts *DecrypterOpts) (*_sm2ec.SM2P256Point, []byte, []byte, error) {
|
|
bitSize := c.curve.Params().BitSize
|
|
// Encode the coordinates and let SetBytes reject invalid points.
|
|
byteLen := (bitSize + 7) / 8
|
|
splicingOrder := C1C3C2
|
|
if opts != nil {
|
|
splicingOrder = opts.cipherTextSplicingOrder
|
|
}
|
|
|
|
b := ciphertext[0]
|
|
switch b {
|
|
case uncompressed:
|
|
if len(ciphertext) <= 1+2*byteLen+sm3.Size {
|
|
return nil, nil, nil, errCiphertextTooShort
|
|
}
|
|
C1, err := c.newPoint().SetBytes(ciphertext[:1+2*byteLen])
|
|
if err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
c2, c3 := parseCiphertextC2C3(ciphertext[1+2*byteLen:], splicingOrder)
|
|
return C1, c2, c3, nil
|
|
case compressed02, compressed03:
|
|
C1, err := c.newPoint().SetBytes(ciphertext[:1+byteLen])
|
|
if err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
c2, c3 := parseCiphertextC2C3(ciphertext[1+byteLen:], splicingOrder)
|
|
return C1, c2, c3, nil
|
|
case byte(0x30):
|
|
return parseCiphertextASN1(c, ciphertext)
|
|
default:
|
|
return nil, nil, nil, errors.New("sm2: invalid/unsupport ciphertext format")
|
|
}
|
|
}
|
|
|
|
func parseCiphertextC2C3(ciphertext []byte, order ciphertextSplicingOrder) ([]byte, []byte) {
|
|
if order == C1C3C2 {
|
|
return ciphertext[sm3.Size:], ciphertext[:sm3.Size]
|
|
}
|
|
return ciphertext[:len(ciphertext)-sm3.Size], ciphertext[len(ciphertext)-sm3.Size:]
|
|
}
|
|
|
|
func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) {
|
|
var (
|
|
x1, y1 = &big.Int{}, &big.Int{}
|
|
c2, c3 []byte
|
|
inner cryptobyte.String
|
|
)
|
|
input := cryptobyte.String(ciphertext)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(x1) ||
|
|
!inner.ReadASN1Integer(y1) ||
|
|
!inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) ||
|
|
!inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) ||
|
|
!inner.Empty() {
|
|
return nil, nil, nil, nil, errors.New("sm2: invalid asn1 format ciphertext")
|
|
}
|
|
return x1, y1, c2, c3, nil
|
|
}
|
|
|
|
func parseCiphertextASN1(c *sm2Curve, ciphertext []byte) (*_sm2ec.SM2P256Point, []byte, []byte, error) {
|
|
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
|
|
if err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
C1, err := c.pointFromAffine(x1, y1)
|
|
if err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
return C1, c2, c3, nil
|
|
}
|
|
|
|
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
|
|
|
|
// CalculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA).
|
|
// Compliance with GB/T 32918.2-2016 5.5.
|
|
//
|
|
// This function will not use default UID even the uid argument is empty.
|
|
func CalculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
|
|
uidLen := len(uid)
|
|
if uidLen >= 0x2000 {
|
|
return nil, errors.New("sm2: the uid is too long")
|
|
}
|
|
entla := uint16(uidLen) << 3
|
|
md := sm3.New()
|
|
md.Write([]byte{byte(entla >> 8), byte(entla)})
|
|
if uidLen > 0 {
|
|
md.Write(uid)
|
|
}
|
|
a := new(big.Int).Sub(pub.Params().P, big.NewInt(3))
|
|
md.Write(toBytes(pub.Curve, a))
|
|
md.Write(toBytes(pub.Curve, pub.Params().B))
|
|
md.Write(toBytes(pub.Curve, pub.Params().Gx))
|
|
md.Write(toBytes(pub.Curve, pub.Params().Gy))
|
|
md.Write(toBytes(pub.Curve, pub.X))
|
|
md.Write(toBytes(pub.Curve, pub.Y))
|
|
return md.Sum(nil), nil
|
|
}
|
|
|
|
// CalculateSM2Hash calculates hash value for data including uid and public key parameters
|
|
// according standards.
|
|
//
|
|
// uid can be nil, then it will use default uid (1234567812345678)
|
|
func CalculateSM2Hash(pub *ecdsa.PublicKey, data, uid []byte) ([]byte, error) {
|
|
if len(uid) == 0 {
|
|
uid = defaultUID
|
|
}
|
|
za, err := CalculateZA(pub, uid)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
md := sm3.New()
|
|
md.Write(za)
|
|
md.Write(data)
|
|
return md.Sum(nil), nil
|
|
}
|
|
|
|
// SignASN1 signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the ASN.1 encoded signature.
|
|
//
|
|
// The signature is randomized. Most applications should use [crypto/rand.Reader]
|
|
// as rand. Note that the returned signature does not depend deterministically on
|
|
// the bytes read from rand, and may change between calls and/or between versions.
|
|
//
|
|
// If the opts argument is instance of [*SM2SignerOption], and its ForceGMSign is true,
|
|
// then the hash will be treated as raw message.
|
|
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
|
|
if sm2Opts, ok := opts.(*SM2SignerOption); ok && sm2Opts.forceGMSign {
|
|
newHash, err := CalculateSM2Hash(&priv.PublicKey, hash, sm2Opts.uid)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
hash = newHash
|
|
}
|
|
|
|
randutil.MaybeReadByte(rand)
|
|
|
|
switch priv.Curve.Params() {
|
|
case P256().Params():
|
|
return signSM2EC(p256(), priv, rand, hash)
|
|
default:
|
|
return signLegacy(priv, rand, hash)
|
|
}
|
|
}
|
|
|
|
func (priv *PrivateKey) inverseOfPrivateKeyPlus1(c *sm2Curve) (*bigmod.Nat, error) {
|
|
var (
|
|
err error
|
|
dp1Inv, oneNat *bigmod.Nat
|
|
dp1Bytes []byte
|
|
)
|
|
priv.inverseOfKeyPlus1Once.Do(func() {
|
|
oneNat, _ = bigmod.NewNat().SetUint(1, c.N)
|
|
dp1Inv, err = bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
|
|
if err == nil {
|
|
dp1Inv.Add(oneNat, c.N)
|
|
if dp1Inv.IsZero() == 1 { // make sure private key is NOT N-1
|
|
err = errInvalidPrivateKey
|
|
} else {
|
|
dp1Bytes, err = _sm2ec.P256OrdInverse(dp1Inv.Bytes(c.N))
|
|
if err == nil {
|
|
priv.inverseOfKeyPlus1, err = bigmod.NewNat().SetBytes(dp1Bytes, c.N)
|
|
}
|
|
}
|
|
}
|
|
})
|
|
if err != nil {
|
|
return nil, errInvalidPrivateKey
|
|
}
|
|
return priv.inverseOfKeyPlus1, nil
|
|
}
|
|
|
|
func signSM2EC(c *sm2Curve, priv *PrivateKey, rand io.Reader, hash []byte) (sig []byte, err error) {
|
|
// dp1Inv = (d+1)⁻¹
|
|
dp1Inv, err := priv.inverseOfPrivateKeyPlus1(c)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var (
|
|
k, r, s *bigmod.Nat
|
|
R *_sm2ec.SM2P256Point
|
|
)
|
|
|
|
// hash to int
|
|
e := bigmod.NewNat()
|
|
hashToNat(c, e, hash)
|
|
|
|
for {
|
|
for {
|
|
k, R, err = randomPoint(c, rand, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
Rx, err := R.BytesX()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r, err = bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// r = [Rx + e]
|
|
r.Add(e, c.N)
|
|
|
|
// checks if r is zero or [r+k] is zero
|
|
if r.IsZero() == 0 {
|
|
t := bigmod.NewNat().Set(k).Add(r, c.N)
|
|
if t.IsZero() == 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
// s = [r * d]
|
|
s, err = bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
s.Mul(r, c.N)
|
|
// k = [k - s]
|
|
k.Sub(s, c.N)
|
|
// k = [(d+1)⁻¹ * (k - r * d)]
|
|
k.Mul(dp1Inv, c.N)
|
|
if k.IsZero() == 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return encodeSignature(r.Bytes(c.N), k.Bytes(c.N))
|
|
}
|
|
|
|
func encodeSignature(r, s []byte) ([]byte, error) {
|
|
var b cryptobyte.Builder
|
|
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
|
addASN1IntBytes(b, r)
|
|
addASN1IntBytes(b, s)
|
|
})
|
|
return b.Bytes()
|
|
}
|
|
|
|
// addASN1IntBytes encodes in ASN.1 a positive integer represented as
|
|
// a big-endian byte slice with zero or more leading zeroes.
|
|
func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
|
|
for len(bytes) > 0 && bytes[0] == 0 {
|
|
bytes = bytes[1:]
|
|
}
|
|
if len(bytes) == 0 {
|
|
b.SetError(errors.New("invalid integer"))
|
|
return
|
|
}
|
|
b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
|
|
if bytes[0]&0x80 != 0 {
|
|
c.AddUint8(0)
|
|
}
|
|
c.AddBytes(bytes)
|
|
})
|
|
}
|
|
|
|
var ErrInvalidSignature = errors.New("sm2: invalid signature")
|
|
|
|
// RecoverPublicKeysFromSM2Signature recovers two or four SM2 public keys from a given signature and hash.
|
|
// It takes the hash and signature as input and returns the recovered public keys as []*ecdsa.PublicKey.
|
|
// If the signature or hash is invalid, it returns an error.
|
|
// The function follows the SM2 algorithm to recover the public keys.
|
|
func RecoverPublicKeysFromSM2Signature(hash, sig []byte) ([]*ecdsa.PublicKey, error) {
|
|
c := p256()
|
|
rBytes, sBytes, err := parseSignature(sig)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
|
|
if err != nil || r.IsZero() == 1 {
|
|
return nil, ErrInvalidSignature
|
|
}
|
|
s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
|
|
if err != nil || s.IsZero() == 1 {
|
|
return nil, ErrInvalidSignature
|
|
}
|
|
|
|
e := bigmod.NewNat()
|
|
hashToNat(c, e, hash)
|
|
|
|
// p₁ = [-s]G
|
|
negS := bigmod.NewNat().ExpandFor(c.N).Sub(s, c.N)
|
|
p1, err := c.newPoint().ScalarBaseMult(negS.Bytes(c.N))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// s = [r + s]
|
|
s.Add(r, c.N)
|
|
if s.IsZero() == 1 {
|
|
return nil, ErrInvalidSignature
|
|
}
|
|
// sBytes = (r+s)⁻¹
|
|
sBytes, err = _sm2ec.P256OrdInverse(s.Bytes(c.N))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// r = (Rx + e) mod N
|
|
// Rx = r - e
|
|
r.Sub(e, c.N)
|
|
if r.IsZero() == 1 {
|
|
return nil, ErrInvalidSignature
|
|
}
|
|
pointRx := make([]*bigmod.Nat, 0, 2)
|
|
pointRx = append(pointRx, r)
|
|
// check if Rx in (N, P), small probability event
|
|
s.Set(r)
|
|
s = s.Add(c.N.Nat(), c.P)
|
|
if s.CmpGeq(c.N.Nat()) == 1 {
|
|
pointRx = append(pointRx, s)
|
|
}
|
|
pubs := make([]*ecdsa.PublicKey, 0, 4)
|
|
bytes := make([]byte, 32+1)
|
|
compressFlags := []byte{compressed02, compressed03}
|
|
// Rx has one or two possible values, so point R has two or four possible values
|
|
for _, x := range pointRx {
|
|
rBytes = x.Bytes(c.N)
|
|
copy(bytes[1:], rBytes)
|
|
for _, flag := range compressFlags {
|
|
bytes[0] = flag
|
|
// p0 = R
|
|
p0, err := c.newPoint().SetBytes(bytes)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// p0 = R - [s]G
|
|
p0.Add(p0, p1)
|
|
// Pub = [(r + s)⁻¹](R - [s]G)
|
|
p0.ScalarMult(p0, sBytes)
|
|
pub := new(ecdsa.PublicKey)
|
|
pub.Curve = c.curve
|
|
pub.X, pub.Y, err = c.pointToAffine(p0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
pubs = append(pubs, pub)
|
|
}
|
|
}
|
|
|
|
return pubs, nil
|
|
}
|
|
|
|
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
|
|
// public key, pub. Its return value records whether the signature is valid.
|
|
//
|
|
// Compliance with GB/T 32918.2-2016 regardless it's SM2 curve or not.
|
|
// Caller should make sure the hash's correctness, in other words,
|
|
// the caller must pre-calculate the hash value.
|
|
func VerifyASN1(pub *ecdsa.PublicKey, hash, sig []byte) bool {
|
|
switch pub.Curve.Params() {
|
|
case P256().Params():
|
|
return verifySM2EC(p256(), pub, hash, sig)
|
|
default:
|
|
return verifyLegacy(pub, hash, sig)
|
|
}
|
|
}
|
|
|
|
func verifySM2EC(c *sm2Curve, pub *ecdsa.PublicKey, hash, sig []byte) bool {
|
|
rBytes, sBytes, err := parseSignature(sig)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
Q, err := c.pointFromAffine(pub.X, pub.Y)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
|
|
if err != nil || r.IsZero() == 1 {
|
|
return false
|
|
}
|
|
s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
|
|
if err != nil || s.IsZero() == 1 {
|
|
return false
|
|
}
|
|
|
|
e := bigmod.NewNat()
|
|
hashToNat(c, e, hash)
|
|
|
|
// p₁ = [s]G
|
|
p1, err := c.newPoint().ScalarBaseMult(s.Bytes(c.N))
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
// s = [r + s]
|
|
s.Add(r, c.N)
|
|
if s.IsZero() == 1 {
|
|
return false
|
|
}
|
|
|
|
// p₂ = [r+s]Q
|
|
p2, err := Q.ScalarMult(Q, s.Bytes(c.N))
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
// BytesX returns an error for the point at infinity.
|
|
Rx, err := p1.Add(p1, p2).BytesX()
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
_, err = s.SetOverflowingBytes(Rx, c.N)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
s.Add(e, c.N)
|
|
|
|
return s.Equal(r) == 1
|
|
}
|
|
|
|
// VerifyASN1WithSM2 verifies the signature in ASN.1 encoding format sig of raw msg
|
|
// and uid using the public key, pub. The uid can be empty, meaning to use the default value.
|
|
//
|
|
// It returns value records whether the signature is valid. Compliance with GB/T 32918.2-2016.
|
|
func VerifyASN1WithSM2(pub *ecdsa.PublicKey, uid, msg, sig []byte) bool {
|
|
digest, err := CalculateSM2Hash(pub, msg, uid)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return VerifyASN1(pub, digest, sig)
|
|
}
|
|
|
|
func parseSignature(sig []byte) (r, s []byte, err error) {
|
|
var inner cryptobyte.String
|
|
input := cryptobyte.String(sig)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(&r) ||
|
|
!inner.ReadASN1Integer(&s) ||
|
|
!inner.Empty() {
|
|
return nil, nil, errors.New("invalid ASN.1")
|
|
}
|
|
return r, s, nil
|
|
}
|
|
|
|
// hashToNat sets e to the left-most bits of hash, according to
|
|
// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3.
|
|
func hashToNat(c *sm2Curve, e *bigmod.Nat, hash []byte) {
|
|
// ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
|
|
// an integer modulo N. This is the absolute worst of all worlds: we still
|
|
// have to reduce, because the result might still overflow N, but to take
|
|
// the left-most bits for P-521 we have to do a right shift.
|
|
if size := c.N.Size(); len(hash) > size {
|
|
hash = hash[:size]
|
|
if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
|
|
hash = append([]byte{}, hash...)
|
|
for i := len(hash) - 1; i >= 0; i-- {
|
|
hash[i] >>= excess
|
|
if i > 0 {
|
|
hash[i] |= hash[i-1] << (8 - excess)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_, err := e.SetOverflowingBytes(hash, c.N)
|
|
if err != nil {
|
|
panic("sm2: internal error: truncated hash is too long")
|
|
}
|
|
}
|
|
|
|
// IsSM2PublicKey check if given public key is a SM2 public key or not
|
|
func IsSM2PublicKey(publicKey any) bool {
|
|
pub, ok := publicKey.(*ecdsa.PublicKey)
|
|
return ok && pub.Curve == sm2ec.P256()
|
|
}
|
|
|
|
// P256 returns sm2 curve signleton, this function is for backward compatibility.
|
|
func P256() elliptic.Curve {
|
|
return sm2ec.P256()
|
|
}
|
|
|
|
// PublicKeyToECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
|
|
// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
|
|
// Curve is not supported by ecdh.
|
|
func PublicKeyToECDH(k *ecdsa.PublicKey) (*ecdh.PublicKey, error) {
|
|
c := curveToECDH(k.Curve)
|
|
if c == nil {
|
|
return nil, errors.New("sm2: unsupported curve by ecdh")
|
|
}
|
|
if !k.Curve.IsOnCurve(k.X, k.Y) {
|
|
return nil, errors.New("sm2: invalid public key")
|
|
}
|
|
return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
|
|
}
|
|
|
|
// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
|
|
// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
|
|
// Curve is not supported by ecdh.
|
|
func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
|
|
c := curveToECDH(k.Curve)
|
|
if c == nil {
|
|
return nil, errors.New("sm2: unsupported curve by ecdh")
|
|
}
|
|
size := (k.Curve.Params().N.BitLen() + 7) / 8
|
|
if k.D.BitLen() > size*8 {
|
|
return nil, errors.New("sm2: invalid private key")
|
|
}
|
|
return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
|
|
}
|
|
|
|
func curveToECDH(c elliptic.Curve) ecdh.Curve {
|
|
switch c {
|
|
case sm2ec.P256():
|
|
return ecdh.P256()
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// randomPoint returns a random scalar and the corresponding point using the
|
|
// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling).
|
|
func randomPoint(c *sm2Curve, rand io.Reader, checkOrderMinus1 bool) (k *bigmod.Nat, p *_sm2ec.SM2P256Point, err error) {
|
|
k = bigmod.NewNat()
|
|
for {
|
|
b := make([]byte, c.N.Size())
|
|
if _, err = io.ReadFull(rand, b); err != nil {
|
|
return
|
|
}
|
|
|
|
// Mask off any excess bits to increase the chance of hitting a value in
|
|
// (0, N). These are the most dangerous lines in the package and maybe in
|
|
// the library: a single bit of bias in the selection of nonces would likely
|
|
// lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
|
|
if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
|
|
// Just to be safe, assert that this only happens for the one curve that
|
|
// doesn't have a round number of bits.
|
|
if excess != 0 {
|
|
panic("sm2: internal error: unexpectedly masking off bits")
|
|
}
|
|
b[0] >>= excess
|
|
}
|
|
|
|
// Checking 0 < k <= N - 2.
|
|
// None of this matters anyway because the chance of selecting
|
|
// zero is cryptographically negligible.
|
|
if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 && (!checkOrderMinus1 || k.Equal(c.nMinus1) == 0) {
|
|
break
|
|
}
|
|
|
|
if testingOnlyRejectionSamplingLooped != nil {
|
|
testingOnlyRejectionSamplingLooped()
|
|
}
|
|
}
|
|
|
|
p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N))
|
|
return
|
|
}
|
|
|
|
// testingOnlyRejectionSamplingLooped is called when rejection sampling in
|
|
// randomPoint rejects a candidate for being higher than the modulus.
|
|
var testingOnlyRejectionSamplingLooped func()
|
|
|
|
type sm2Curve struct {
|
|
newPoint func() *_sm2ec.SM2P256Point
|
|
curve elliptic.Curve
|
|
N *bigmod.Modulus
|
|
P *bigmod.Modulus
|
|
nMinus1 *bigmod.Nat
|
|
nMinus2 []byte
|
|
}
|
|
|
|
// pointFromAffine is used to convert the PublicKey to a sm2 Point.
|
|
func (curve *sm2Curve) pointFromAffine(x, y *big.Int) (p *_sm2ec.SM2P256Point, err error) {
|
|
bitSize := curve.curve.Params().BitSize
|
|
// Reject values that would not get correctly encoded.
|
|
if x.Sign() < 0 || y.Sign() < 0 {
|
|
return p, errors.New("negative coordinate")
|
|
}
|
|
if x.BitLen() > bitSize || y.BitLen() > bitSize {
|
|
return p, errors.New("overflowing coordinate")
|
|
}
|
|
// Encode the coordinates and let SetBytes reject invalid points.
|
|
byteLen := (bitSize + 7) / 8
|
|
buf := make([]byte, 1+2*byteLen)
|
|
buf[0] = 4 // uncompressed point
|
|
x.FillBytes(buf[1 : 1+byteLen])
|
|
y.FillBytes(buf[1+byteLen : 1+2*byteLen])
|
|
return curve.newPoint().SetBytes(buf)
|
|
}
|
|
|
|
// pointToAffine is used to convert a sm2 Point to a PublicKey.
|
|
func (curve *sm2Curve) pointToAffine(p *_sm2ec.SM2P256Point) (x, y *big.Int, err error) {
|
|
out := p.Bytes()
|
|
if len(out) == 1 && out[0] == 0 {
|
|
// This is the encoding of the point at infinity.
|
|
return nil, nil, errors.New("sm2: public key point is the infinity")
|
|
}
|
|
byteLen := (curve.curve.Params().BitSize + 7) / 8
|
|
x = new(big.Int).SetBytes(out[1 : 1+byteLen])
|
|
y = new(big.Int).SetBytes(out[1+byteLen:])
|
|
return x, y, nil
|
|
}
|
|
|
|
var p256Once sync.Once
|
|
var _p256 *sm2Curve
|
|
|
|
func p256() *sm2Curve {
|
|
p256Once.Do(func() {
|
|
_p256 = &sm2Curve{
|
|
newPoint: func() *_sm2ec.SM2P256Point { return _sm2ec.NewSM2P256Point() },
|
|
}
|
|
precomputeParams(_p256, P256())
|
|
})
|
|
return _p256
|
|
}
|
|
|
|
func precomputeParams(c *sm2Curve, curve elliptic.Curve) {
|
|
params := curve.Params()
|
|
c.curve = curve
|
|
c.N, _ = bigmod.NewModulus(params.N.Bytes())
|
|
c.P, _ = bigmod.NewModulus(params.P.Bytes())
|
|
c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes()
|
|
c.nMinus1, _ = bigmod.NewNat().SetBytes(new(big.Int).Sub(params.N, big.NewInt(1)).Bytes(), c.N)
|
|
}
|
|
|
|
var errInvalidPrivateKey = errors.New("sm2: invalid private key")
|