mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-25 19:56:18 +08:00
725 lines
27 KiB
Go
725 lines
27 KiB
Go
// Copyright 2022 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
//go:build purego || !(amd64 || arm64 || s390x || ppc64le)
|
||
|
||
package sm2ec
|
||
|
||
import (
|
||
"crypto/subtle"
|
||
_ "embed"
|
||
"errors"
|
||
"math/bits"
|
||
"runtime"
|
||
"sync"
|
||
"unsafe"
|
||
|
||
"github.com/emmansun/gmsm/internal/byteorder"
|
||
"github.com/emmansun/gmsm/internal/sm2ec/fiat"
|
||
)
|
||
|
||
// SM2P256Point is a SM2P256 point. The zero value is NOT valid.
|
||
type SM2P256Point struct {
|
||
// The point is represented in projective coordinates (X:Y:Z),
|
||
// where x = X/Z and y = Y/Z. Infinity is (0:1:0).
|
||
//
|
||
// fiat.SM2P256Element is a base field element in [0, P-1] in the Montgomery
|
||
// domain as four limbs in little-endian order value.
|
||
x, y, z fiat.SM2P256Element
|
||
}
|
||
|
||
// NewSM2P256Point returns a new SM2P256Point representing the point at infinity point.
|
||
func NewSM2P256Point() *SM2P256Point {
|
||
p := &SM2P256Point{}
|
||
p.y.One()
|
||
return p
|
||
}
|
||
|
||
// SetGenerator sets p to the canonical generator and returns p.
|
||
func (p *SM2P256Point) SetGenerator() *SM2P256Point {
|
||
p.x.SetBytes([]byte{0x32, 0xc4, 0xae, 0x2c, 0x1f, 0x19, 0x81, 0x19, 0x5f, 0x99, 0x4, 0x46, 0x6a, 0x39, 0xc9, 0x94, 0x8f, 0xe3, 0xb, 0xbf, 0xf2, 0x66, 0xb, 0xe1, 0x71, 0x5a, 0x45, 0x89, 0x33, 0x4c, 0x74, 0xc7})
|
||
p.y.SetBytes([]byte{0xbc, 0x37, 0x36, 0xa2, 0xf4, 0xf6, 0x77, 0x9c, 0x59, 0xbd, 0xce, 0xe3, 0x6b, 0x69, 0x21, 0x53, 0xd0, 0xa9, 0x87, 0x7c, 0xc6, 0x2a, 0x47, 0x40, 0x2, 0xdf, 0x32, 0xe5, 0x21, 0x39, 0xf0, 0xa0})
|
||
p.z.One()
|
||
return p
|
||
}
|
||
|
||
// Set sets p = q and returns p.
|
||
func (p *SM2P256Point) Set(q *SM2P256Point) *SM2P256Point {
|
||
p.x.Set(&q.x)
|
||
p.y.Set(&q.y)
|
||
p.z.Set(&q.z)
|
||
return p
|
||
}
|
||
|
||
const p256ElementLength = 32
|
||
const p256UncompressedLength = 1 + 2*p256ElementLength
|
||
const p256CompressedLength = 1 + p256ElementLength
|
||
|
||
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
|
||
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
|
||
// the curve, it returns nil and an error, and the receiver is unchanged.
|
||
// Otherwise, it returns p.
|
||
func (p *SM2P256Point) SetBytes(b []byte) (*SM2P256Point, error) {
|
||
switch {
|
||
// Point at infinity.
|
||
case len(b) == 1 && b[0] == 0:
|
||
return p.Set(NewSM2P256Point()), nil
|
||
// Uncompressed form.
|
||
case len(b) == p256UncompressedLength && b[0] == 4:
|
||
x, err := new(fiat.SM2P256Element).SetBytes(b[1 : 1+p256ElementLength])
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
y, err := new(fiat.SM2P256Element).SetBytes(b[1+p256ElementLength:])
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
if err := sm2p256CheckOnCurve(x, y); err != nil {
|
||
return nil, err
|
||
}
|
||
p.x.Set(x)
|
||
p.y.Set(y)
|
||
p.z.One()
|
||
return p, nil
|
||
// Compressed form.
|
||
case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3):
|
||
x, err := new(fiat.SM2P256Element).SetBytes(b[1:])
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
// y² = x³ - 3x + b
|
||
y := sm2p256Polynomial(new(fiat.SM2P256Element), x)
|
||
if !sm2p256Sqrt(y, y) {
|
||
return nil, errors.New("invalid SM2P256 compressed point encoding")
|
||
}
|
||
// Select the positive or negative root, as indicated by the least
|
||
// significant bit, based on the encoding type byte.
|
||
otherRoot := new(fiat.SM2P256Element)
|
||
otherRoot.Sub(otherRoot, y)
|
||
cond := y.Bytes()[p256ElementLength-1]&1 ^ b[0]&1
|
||
y.Select(otherRoot, y, int(cond))
|
||
p.x.Set(x)
|
||
p.y.Set(y)
|
||
p.z.One()
|
||
return p, nil
|
||
default:
|
||
return nil, errors.New("invalid SM2P256 point encoding")
|
||
}
|
||
}
|
||
|
||
var _sm2p256B *fiat.SM2P256Element
|
||
var _sm2p256BOnce sync.Once
|
||
|
||
func sm2p256B() *fiat.SM2P256Element {
|
||
_sm2p256BOnce.Do(func() {
|
||
_sm2p256B, _ = new(fiat.SM2P256Element).SetBytes([]byte{0x28, 0xe9, 0xfa, 0x9e, 0x9d, 0x9f, 0x5e, 0x34, 0x4d, 0x5a, 0x9e, 0x4b, 0xcf, 0x65, 0x9, 0xa7, 0xf3, 0x97, 0x89, 0xf5, 0x15, 0xab, 0x8f, 0x92, 0xdd, 0xbc, 0xbd, 0x41, 0x4d, 0x94, 0xe, 0x93})
|
||
})
|
||
return _sm2p256B
|
||
}
|
||
|
||
// sm2p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||
func sm2p256Polynomial(y2, x *fiat.SM2P256Element) *fiat.SM2P256Element {
|
||
y2.Square(x)
|
||
y2.Mul(y2, x)
|
||
|
||
threeX := new(fiat.SM2P256Element).Add(x, x)
|
||
threeX.Add(threeX, x)
|
||
|
||
y2.Sub(y2, threeX)
|
||
|
||
return y2.Add(y2, sm2p256B())
|
||
}
|
||
|
||
func sm2p256CheckOnCurve(x, y *fiat.SM2P256Element) error {
|
||
// y² = x³ - 3x + b
|
||
rhs := sm2p256Polynomial(new(fiat.SM2P256Element), x)
|
||
lhs := new(fiat.SM2P256Element).Square(y)
|
||
if rhs.Equal(lhs) != 1 {
|
||
return errors.New("point not on SM2 P256 curve")
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// Bytes returns the uncompressed or infinity encoding of p, as specified in
|
||
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
|
||
// infinity is shorter than all other encodings.
|
||
func (p *SM2P256Point) Bytes() []byte {
|
||
// This function is outlined to make the allocations inline in the caller
|
||
// rather than happen on the heap.
|
||
var out [p256UncompressedLength]byte
|
||
return p.bytes(&out)
|
||
}
|
||
|
||
func (p *SM2P256Point) bytes(out *[p256UncompressedLength]byte) []byte {
|
||
if p.z.IsZero() == 1 {
|
||
return append(out[:0], 0)
|
||
}
|
||
zinv := new(fiat.SM2P256Element).Invert(&p.z)
|
||
x := new(fiat.SM2P256Element).Mul(&p.x, zinv)
|
||
y := new(fiat.SM2P256Element).Mul(&p.y, zinv)
|
||
buf := append(out[:0], 4)
|
||
buf = append(buf, x.Bytes()...)
|
||
buf = append(buf, y.Bytes()...)
|
||
return buf
|
||
}
|
||
|
||
// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
|
||
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
|
||
func (p *SM2P256Point) BytesX() ([]byte, error) {
|
||
// This function is outlined to make the allocations inline in the caller
|
||
// rather than happen on the heap.
|
||
var out [p256ElementLength]byte
|
||
return p.bytesX(&out)
|
||
}
|
||
|
||
func (p *SM2P256Point) bytesX(out *[p256ElementLength]byte) ([]byte, error) {
|
||
if p.z.IsZero() == 1 {
|
||
return nil, errors.New("SM2P256 point is the point at infinity")
|
||
}
|
||
zinv := new(fiat.SM2P256Element).Invert(&p.z)
|
||
x := new(fiat.SM2P256Element).Mul(&p.x, zinv)
|
||
return append(out[:0], x.Bytes()...), nil
|
||
}
|
||
|
||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||
// point at infinity is shorter than all other encodings.
|
||
func (p *SM2P256Point) BytesCompressed() []byte {
|
||
// This function is outlined to make the allocations inline in the caller
|
||
// rather than happen on the heap.
|
||
var out [p256CompressedLength]byte
|
||
return p.bytesCompressed(&out)
|
||
}
|
||
|
||
func (p *SM2P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte {
|
||
if p.z.IsZero() == 1 {
|
||
return append(out[:0], 0)
|
||
}
|
||
zinv := new(fiat.SM2P256Element).Invert(&p.z)
|
||
x := new(fiat.SM2P256Element).Mul(&p.x, zinv)
|
||
y := new(fiat.SM2P256Element).Mul(&p.y, zinv)
|
||
// Encode the sign of the y coordinate (indicated by the least significant
|
||
// bit) as the encoding type (2 or 3).
|
||
buf := append(out[:0], 2)
|
||
buf[0] |= y.Bytes()[p256ElementLength-1] & 1
|
||
buf = append(buf, x.Bytes()...)
|
||
return buf
|
||
}
|
||
|
||
// Add sets q = p1 + p2, and returns q. The points may overlap.
|
||
func (q *SM2P256Point) Add(p1, p2 *SM2P256Point) *SM2P256Point {
|
||
// Complete addition formula for a = -3 from "Complete addition formulas for
|
||
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
|
||
t0 := new(fiat.SM2P256Element).Mul(&p1.x, &p2.x) // t0 := X1 * X2
|
||
t1 := new(fiat.SM2P256Element).Mul(&p1.y, &p2.y) // t1 := Y1 * Y2
|
||
t2 := new(fiat.SM2P256Element).Mul(&p1.z, &p2.z) // t2 := Z1 * Z2
|
||
t3 := new(fiat.SM2P256Element).Add(&p1.x, &p1.y) // t3 := X1 + Y1
|
||
t4 := new(fiat.SM2P256Element).Add(&p2.x, &p2.y) // t4 := X2 + Y2
|
||
t3.Mul(t3, t4) // t3 := t3 * t4
|
||
t4.Add(t0, t1) // t4 := t0 + t1
|
||
t3.Sub(t3, t4) // t3 := t3 - t4
|
||
t4.Add(&p1.y, &p1.z) // t4 := Y1 + Z1
|
||
x3 := new(fiat.SM2P256Element).Add(&p2.y, &p2.z) // X3 := Y2 + Z2
|
||
t4.Mul(t4, x3) // t4 := t4 * X3
|
||
x3.Add(t1, t2) // X3 := t1 + t2
|
||
t4.Sub(t4, x3) // t4 := t4 - X3
|
||
x3.Add(&p1.x, &p1.z) // X3 := X1 + Z1
|
||
y3 := new(fiat.SM2P256Element).Add(&p2.x, &p2.z) // Y3 := X2 + Z2
|
||
x3.Mul(x3, y3) // X3 := X3 * Y3
|
||
y3.Add(t0, t2) // Y3 := t0 + t2
|
||
y3.Sub(x3, y3) // Y3 := X3 - Y3
|
||
z3 := new(fiat.SM2P256Element).Mul(sm2p256B(), t2) // Z3 := b * t2
|
||
x3.Sub(y3, z3) // X3 := Y3 - Z3
|
||
z3.Add(x3, x3) // Z3 := X3 + X3
|
||
x3.Add(x3, z3) // X3 := X3 + Z3
|
||
z3.Sub(t1, x3) // Z3 := t1 - X3
|
||
x3.Add(t1, x3) // X3 := t1 + X3
|
||
y3.Mul(sm2p256B(), y3) // Y3 := b * Y3
|
||
t1.Add(t2, t2) // t1 := t2 + t2
|
||
t2.Add(t1, t2) // t2 := t1 + t2
|
||
y3.Sub(y3, t2) // Y3 := Y3 - t2
|
||
y3.Sub(y3, t0) // Y3 := Y3 - t0
|
||
t1.Add(y3, y3) // t1 := Y3 + Y3
|
||
y3.Add(t1, y3) // Y3 := t1 + Y3
|
||
t1.Add(t0, t0) // t1 := t0 + t0
|
||
t0.Add(t1, t0) // t0 := t1 + t0
|
||
t0.Sub(t0, t2) // t0 := t0 - t2
|
||
t1.Mul(t4, y3) // t1 := t4 * Y3
|
||
t2.Mul(t0, y3) // t2 := t0 * Y3
|
||
y3.Mul(x3, z3) // Y3 := X3 * Z3
|
||
y3.Add(y3, t2) // Y3 := Y3 + t2
|
||
x3.Mul(t3, x3) // X3 := t3 * X3
|
||
x3.Sub(x3, t1) // X3 := X3 - t1
|
||
z3.Mul(t4, z3) // Z3 := t4 * Z3
|
||
t1.Mul(t3, t0) // t1 := t3 * t0
|
||
z3.Add(z3, t1) // Z3 := Z3 + t1
|
||
|
||
q.x.Set(x3)
|
||
q.y.Set(y3)
|
||
q.z.Set(z3)
|
||
return q
|
||
}
|
||
|
||
// Double sets q = p + p, and returns q. The points may overlap.
|
||
func (q *SM2P256Point) Double(p *SM2P256Point) *SM2P256Point {
|
||
// Complete addition formula for a = -3 from "Complete addition formulas for
|
||
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
|
||
t0 := new(fiat.SM2P256Element).Square(&p.x) // t0 := X ^ 2
|
||
t1 := new(fiat.SM2P256Element).Square(&p.y) // t1 := Y ^ 2
|
||
t2 := new(fiat.SM2P256Element).Square(&p.z) // t2 := Z ^ 2
|
||
t3 := new(fiat.SM2P256Element).Mul(&p.x, &p.y) // t3 := X * Y
|
||
t3.Add(t3, t3) // t3 := t3 + t3
|
||
z3 := new(fiat.SM2P256Element).Mul(&p.x, &p.z) // Z3 := X * Z
|
||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||
y3 := new(fiat.SM2P256Element).Mul(sm2p256B(), t2) // Y3 := b * t2
|
||
y3.Sub(y3, z3) // Y3 := Y3 - Z3
|
||
x3 := new(fiat.SM2P256Element).Add(y3, y3) // X3 := Y3 + Y3
|
||
y3.Add(x3, y3) // Y3 := X3 + Y3
|
||
x3.Sub(t1, y3) // X3 := t1 - Y3
|
||
y3.Add(t1, y3) // Y3 := t1 + Y3
|
||
y3.Mul(x3, y3) // Y3 := X3 * Y3
|
||
x3.Mul(x3, t3) // X3 := X3 * t3
|
||
t3.Add(t2, t2) // t3 := t2 + t2
|
||
t2.Add(t2, t3) // t2 := t2 + t3
|
||
z3.Mul(sm2p256B(), z3) // Z3 := b * Z3
|
||
z3.Sub(z3, t2) // Z3 := Z3 - t2
|
||
z3.Sub(z3, t0) // Z3 := Z3 - t0
|
||
t3.Add(z3, z3) // t3 := Z3 + Z3
|
||
z3.Add(z3, t3) // Z3 := Z3 + t3
|
||
t3.Add(t0, t0) // t3 := t0 + t0
|
||
t0.Add(t3, t0) // t0 := t3 + t0
|
||
t0.Sub(t0, t2) // t0 := t0 - t2
|
||
t0.Mul(t0, z3) // t0 := t0 * Z3
|
||
y3.Add(y3, t0) // Y3 := Y3 + t0
|
||
t0.Mul(&p.y, &p.z) // t0 := Y * Z
|
||
t0.Add(t0, t0) // t0 := t0 + t0
|
||
z3.Mul(t0, z3) // Z3 := t0 * Z3
|
||
x3.Sub(x3, z3) // X3 := X3 - Z3
|
||
z3.Mul(t0, t1) // Z3 := t0 * t1
|
||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||
z3.Add(z3, z3) // Z3 := Z3 + Z3
|
||
|
||
q.x.Set(x3)
|
||
q.y.Set(y3)
|
||
q.z.Set(z3)
|
||
return q
|
||
}
|
||
|
||
// sm2P256AffinePoint is a point in affine coordinates (x, y). x and y are still
|
||
// Montgomery domain elements. The point can't be the point at infinity.
|
||
type sm2P256AffinePoint struct {
|
||
x, y fiat.SM2P256Element
|
||
}
|
||
|
||
func (p *sm2P256AffinePoint) Projective() *SM2P256Point {
|
||
pp := &SM2P256Point{x: p.x, y: p.y}
|
||
pp.z.One()
|
||
return pp
|
||
}
|
||
|
||
// AddAffine sets q = p1 + p2, if infinity == 0, and to p1 if infinity == 1.
|
||
// p2 can't be the point at infinity as it can't be represented in affine
|
||
// coordinates, instead callers can set p2 to an arbitrary point and set
|
||
// infinity to 1.
|
||
func (q *SM2P256Point) AddAffine(p1 *SM2P256Point, p2 *sm2P256AffinePoint, infinity int) *SM2P256Point {
|
||
// Complete mixed addition formula for a = -3 from "Complete addition
|
||
// formulas for prime order elliptic curves"
|
||
// (https://eprint.iacr.org/2015/1060), Algorithm 5.
|
||
|
||
t0 := new(fiat.SM2P256Element).Mul(&p1.x, &p2.x) // t0 ← X1 · X2
|
||
t1 := new(fiat.SM2P256Element).Mul(&p1.y, &p2.y) // t1 ← Y1 · Y2
|
||
t3 := new(fiat.SM2P256Element).Add(&p2.x, &p2.y) // t3 ← X2 + Y2
|
||
t4 := new(fiat.SM2P256Element).Add(&p1.x, &p1.y) // t4 ← X1 + Y1
|
||
t3.Mul(t3, t4) // t3 ← t3 · t4
|
||
t4.Add(t0, t1) // t4 ← t0 + t1
|
||
t3.Sub(t3, t4) // t3 ← t3 − t4
|
||
t4.Mul(&p2.y, &p1.z) // t4 ← Y2 · Z1
|
||
t4.Add(t4, &p1.y) // t4 ← t4 + Y1
|
||
y3 := new(fiat.SM2P256Element).Mul(&p2.x, &p1.z) // Y3 ← X2 · Z1
|
||
y3.Add(y3, &p1.x) // Y3 ← Y3 + X1
|
||
z3 := new(fiat.SM2P256Element).Mul(sm2p256B(), &p1.z) // Z3 ← b · Z1
|
||
x3 := new(fiat.SM2P256Element).Sub(y3, z3) // X3 ← Y3 − Z3
|
||
z3.Add(x3, x3) // Z3 ← X3 + X3
|
||
x3.Add(x3, z3) // X3 ← X3 + Z3
|
||
z3.Sub(t1, x3) // Z3 ← t1 − X3
|
||
x3.Add(t1, x3) // X3 ← t1 + X3
|
||
y3.Mul(sm2p256B(), y3) // Y3 ← b · Y3
|
||
t1.Add(&p1.z, &p1.z) // t1 ← Z1 + Z1
|
||
t2 := new(fiat.SM2P256Element).Add(t1, &p1.z) // t2 ← t1 + Z1
|
||
y3.Sub(y3, t2) // Y3 ← Y3 − t2
|
||
y3.Sub(y3, t0) // Y3 ← Y3 − t0
|
||
t1.Add(y3, y3) // t1 ← Y3 + Y3
|
||
y3.Add(t1, y3) // Y3 ← t1 + Y3
|
||
t1.Add(t0, t0) // t1 ← t0 + t0
|
||
t0.Add(t1, t0) // t0 ← t1 + t0
|
||
t0.Sub(t0, t2) // t0 ← t0 − t2
|
||
t1.Mul(t4, y3) // t1 ← t4 · Y3
|
||
t2.Mul(t0, y3) // t2 ← t0 · Y3
|
||
y3.Mul(x3, z3) // Y3 ← X3 · Z3
|
||
y3.Add(y3, t2) // Y3 ← Y3 + t2
|
||
x3.Mul(t3, x3) // X3 ← t3 · X3
|
||
x3.Sub(x3, t1) // X3 ← X3 − t1
|
||
z3.Mul(t4, z3) // Z3 ← t4 · Z3
|
||
t1.Mul(t3, t0) // t1 ← t3 · t0
|
||
z3.Add(z3, t1) // Z3 ← Z3 + t1
|
||
|
||
q.x.Select(&p1.x, x3, infinity)
|
||
q.y.Select(&p1.y, y3, infinity)
|
||
q.z.Select(&p1.z, z3, infinity)
|
||
return q
|
||
}
|
||
|
||
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
|
||
func (q *SM2P256Point) Select(p1, p2 *SM2P256Point, cond int) *SM2P256Point {
|
||
q.x.Select(&p1.x, &p2.x, cond)
|
||
q.y.Select(&p1.y, &p2.y, cond)
|
||
q.z.Select(&p1.z, &p2.z, cond)
|
||
return q
|
||
}
|
||
|
||
// p256OrdElement is a SM2 P256 scalar field element in [0, ord(G)-1] in the
|
||
// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
|
||
type p256OrdElement [4]uint64
|
||
|
||
// SetBytes sets s to the big-endian value of x, reducing it as necessary.
|
||
func (s *p256OrdElement) SetBytes(x []byte) (*p256OrdElement, error) {
|
||
if len(x) != 32 {
|
||
return nil, errors.New("invalid scalar length")
|
||
}
|
||
|
||
s[0] = byteorder.BEUint64(x[24:])
|
||
s[1] = byteorder.BEUint64(x[16:])
|
||
s[2] = byteorder.BEUint64(x[8:])
|
||
s[3] = byteorder.BEUint64(x[:])
|
||
|
||
// Ensure s is in the range [0, ord(G)-1]. Since 2 * ord(G) > 2²⁵⁶, we can
|
||
// just conditionally subtract ord(G), keeping the result if it doesn't
|
||
// underflow.
|
||
t0, b := bits.Sub64(s[0], 0x53bbf40939d54123, 0)
|
||
t1, b := bits.Sub64(s[1], 0x7203df6b21c6052b, b)
|
||
t2, b := bits.Sub64(s[2], 0xffffffffffffffff, b)
|
||
t3, b := bits.Sub64(s[3], 0xfffffffeffffffff, b)
|
||
tMask := b - 1 // zero if subtraction underflowed
|
||
s[0] ^= (t0 ^ s[0]) & tMask
|
||
s[1] ^= (t1 ^ s[1]) & tMask
|
||
s[2] ^= (t2 ^ s[2]) & tMask
|
||
s[3] ^= (t3 ^ s[3]) & tMask
|
||
|
||
return s, nil
|
||
}
|
||
|
||
func (s *p256OrdElement) Bytes() []byte {
|
||
var out [32]byte
|
||
byteorder.BEPutUint64(out[24:], s[0])
|
||
byteorder.BEPutUint64(out[16:], s[1])
|
||
byteorder.BEPutUint64(out[8:], s[2])
|
||
byteorder.BEPutUint64(out[:], s[3])
|
||
return out[:]
|
||
}
|
||
|
||
// Rsh returns the 64 least significant bits of x >> n. n must be lower
|
||
// than 256. The value of n leaks through timing side-channels.
|
||
func (s *p256OrdElement) Rsh(n int) uint64 {
|
||
i := n / 64
|
||
n = n % 64
|
||
res := s[i] >> n
|
||
// Shift in the more significant limb, if present.
|
||
if i := i + 1; i < len(s) {
|
||
res |= s[i] << (64 - n)
|
||
}
|
||
return res
|
||
}
|
||
|
||
// sm2p256Table is a table of the first 32 multiples of a point. Points are stored
|
||
// at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15.
|
||
// [0]P is the point at infinity and it's not stored.
|
||
type sm2p256Table [32]SM2P256Point
|
||
|
||
// Select selects the n-th multiple of the table base point into p. It works in
|
||
// constant time. n must be in [0, 16]. If n is 0, p is set to the identity point.
|
||
func (table *sm2p256Table) Select(p *SM2P256Point, n uint8) {
|
||
if n > 32 {
|
||
panic("sm2ec: internal error: sm2p256Table called with out-of-bounds value")
|
||
}
|
||
p.Set(NewSM2P256Point())
|
||
for i := uint8(1); i <= 32; i++ {
|
||
cond := subtle.ConstantTimeByteEq(i, n)
|
||
p.Select(&table[i-1], p, cond)
|
||
}
|
||
}
|
||
|
||
// Compute populates the table to the first 32 multiples of q.
|
||
func (table *sm2p256Table) Compute(q *SM2P256Point) *sm2p256Table {
|
||
table[0].Set(q)
|
||
for i := 1; i < 32; i += 2 {
|
||
table[i].Double(&table[i/2])
|
||
if i+1 < 32 {
|
||
table[i+1].Add(&table[i], q)
|
||
}
|
||
}
|
||
return table
|
||
}
|
||
|
||
func boothW6(in uint64) (uint8, int) {
|
||
s := ^((in >> 6) - 1)
|
||
d := (1 << 7) - in - 1
|
||
d = (d & s) | (in & (^s))
|
||
d = (d >> 1) + (d & 1)
|
||
return uint8(d), int(s & 1)
|
||
}
|
||
|
||
// ScalarMult sets p = scalar * q, and returns p.
|
||
func (p *SM2P256Point) ScalarMult(q *SM2P256Point, scalar []byte) (*SM2P256Point, error) {
|
||
s, err := new(p256OrdElement).SetBytes(scalar)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
// Start scanning the window from the most significant bits. We move by
|
||
// 6 bits at a time and need to finish at -1, so -1 + 6 * 42 = 251.
|
||
index := 251
|
||
|
||
sel, sign := boothW6(s.Rsh(index))
|
||
// sign is always zero because the boothW6 input here is at
|
||
// most two bits long, so the top bit is never set.
|
||
_ = sign
|
||
|
||
// Neither Select nor Add have exceptions for the point at infinity /
|
||
// selector zero, so we don't need to check for it here or in the loop.
|
||
table := new(sm2p256Table).Compute(q)
|
||
table.Select(p, sel)
|
||
|
||
t := NewSM2P256Point()
|
||
for index >= 5 {
|
||
index -= 6
|
||
|
||
p.Double(p)
|
||
p.Double(p)
|
||
p.Double(p)
|
||
p.Double(p)
|
||
p.Double(p)
|
||
p.Double(p)
|
||
|
||
if index >= 0 {
|
||
sel, sign = boothW6(s.Rsh(index) & 0x7f)
|
||
} else {
|
||
// Booth encoding considers a virtual zero bit at index -1,
|
||
// so we shift left the least significant limb.
|
||
wvalue := (s[0] << 1) & 0x7f
|
||
sel, sign = boothW6(wvalue)
|
||
}
|
||
|
||
table.Select(t, sel)
|
||
t.Negate(sign)
|
||
p.Add(p, t)
|
||
}
|
||
|
||
return p, nil
|
||
}
|
||
|
||
// Negate sets p to -p, if cond == 1, and to p if cond == 0.
|
||
func (p *SM2P256Point) Negate(cond int) *SM2P256Point {
|
||
negY := new(fiat.SM2P256Element)
|
||
negY.Sub(negY, &p.y)
|
||
p.y.Select(negY, &p.y, cond)
|
||
return p
|
||
}
|
||
|
||
// sm2P256AffineTable is a table of the first 32 multiples of a point. Points are
|
||
// stored at an index offset of -1 like in p256Table, and [0]P is not stored.
|
||
type sm2P256AffineTable [32]sm2P256AffinePoint
|
||
|
||
// Select selects the n-th multiple of the table base point into p. It works in
|
||
// constant time. n can be in [0, 32], but (unlike p256Table.Select) if n is 0,
|
||
// p is set to an undefined value.
|
||
func (table *sm2P256AffineTable) Select(p *sm2P256AffinePoint, n uint8) {
|
||
if n > 32 {
|
||
panic("nistec: internal error: sm2P256AffineTable.Select called with out-of-bounds value")
|
||
}
|
||
for i := uint8(1); i <= 32; i++ {
|
||
cond := subtle.ConstantTimeByteEq(i, n)
|
||
p.x.Select(&table[i-1].x, &p.x, cond)
|
||
p.y.Select(&table[i-1].y, &p.y, cond)
|
||
}
|
||
}
|
||
|
||
// sm2p256GeneratorTable is a series of precomputed multiples of G, the canonical
|
||
// generator. The first sm2P256AffineTable contains multiples of G. The second one
|
||
// multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive
|
||
// table is the previous table doubled six times. Six is the width of the
|
||
// sliding window used in ScalarBaseMult, and having each table already
|
||
// pre-doubled lets us avoid the doublings between windows entirely. This table
|
||
// aliases into p256PrecomputedEmbed.
|
||
var sm2p256GeneratorTable *[43]sm2P256AffineTable
|
||
|
||
//go:embed p256_asm_table.bin
|
||
var p256PrecomputedEmbed string
|
||
|
||
func init() {
|
||
p256PrecomputedPtr := (*unsafe.Pointer)(unsafe.Pointer(&p256PrecomputedEmbed))
|
||
// BigEndian architectures need to reverse the byte order of the table.
|
||
if runtime.GOARCH == "armbe" ||
|
||
runtime.GOARCH == "arm64be" ||
|
||
runtime.GOARCH == "ppc" ||
|
||
runtime.GOARCH == "ppc64" ||
|
||
runtime.GOARCH == "mips" ||
|
||
runtime.GOARCH == "mips64" ||
|
||
runtime.GOARCH == "sparc" ||
|
||
runtime.GOARCH == "sparc64" ||
|
||
runtime.GOARCH == "s390" {
|
||
var newTable [43 * 32 * 2 * 4]uint64
|
||
for i, x := range (*[43 * 32 * 2 * 4][8]byte)(*p256PrecomputedPtr) {
|
||
newTable[i] = byteorder.LEUint64(x[:])
|
||
}
|
||
newTablePtr := unsafe.Pointer(&newTable)
|
||
p256PrecomputedPtr = &newTablePtr
|
||
}
|
||
sm2p256GeneratorTable = (*[43]sm2P256AffineTable)(*p256PrecomputedPtr)
|
||
}
|
||
|
||
// ScalarBaseMult sets p = scalar * generator, where scalar is a 32-byte big
|
||
// endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult
|
||
// returns an error and the receiver is unchanged.
|
||
func (p *SM2P256Point) ScalarBaseMult(scalar []byte) (*SM2P256Point, error) {
|
||
// This function works like ScalarMult above, but the table is fixed and
|
||
// "pre-doubled" for each iteration, so instead of doubling we move to the
|
||
// next table at each iteration.
|
||
|
||
s, err := new(p256OrdElement).SetBytes(scalar)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
// Start scanning the window from the most significant bits. We move by
|
||
// 6 bits at a time and need to finish at -1, so -1 + 6 * 42 = 251.
|
||
index := 251
|
||
|
||
sel, sign := boothW6(s.Rsh(index))
|
||
// sign is always zero because the boothW6 input here is at
|
||
// most five bits long, so the top bit is never set.
|
||
_ = sign
|
||
|
||
t := &sm2P256AffinePoint{}
|
||
table := &sm2p256GeneratorTable[(index+1)/6]
|
||
table.Select(t, sel)
|
||
|
||
// Select's output is undefined if the selector is zero, when it should be
|
||
// the point at infinity (because infinity can't be represented in affine
|
||
// coordinates). Here we conditionally set p to the infinity if sel is zero.
|
||
// In the loop, that's handled by AddAffine.
|
||
selIsZero := subtle.ConstantTimeByteEq(sel, 0)
|
||
p.Select(NewSM2P256Point(), t.Projective(), selIsZero)
|
||
|
||
for index >= 5 {
|
||
index -= 6
|
||
|
||
if index >= 0 {
|
||
sel, sign = boothW6(s.Rsh(index) & 0b1111111)
|
||
} else {
|
||
// Booth encoding considers a virtual zero bit at index -1,
|
||
// so we shift left the least significant limb.
|
||
wvalue := (s[0] << 1) & 0b1111111
|
||
sel, sign = boothW6(wvalue)
|
||
}
|
||
|
||
table := &sm2p256GeneratorTable[(index+1)/6]
|
||
table.Select(t, sel)
|
||
t.Negate(sign)
|
||
selIsZero := subtle.ConstantTimeByteEq(sel, 0)
|
||
p.AddAffine(p, t, selIsZero)
|
||
}
|
||
|
||
return p, nil
|
||
}
|
||
|
||
// Negate sets p to -p, if cond == 1, and to p if cond == 0.
|
||
func (p *sm2P256AffinePoint) Negate(cond int) *sm2P256AffinePoint {
|
||
negY := new(fiat.SM2P256Element)
|
||
negY.Sub(negY, &p.y)
|
||
p.y.Select(negY, &p.y, cond)
|
||
return p
|
||
}
|
||
|
||
// sm2p256Sqrt sets e to a square root of x. If x is not a square, sm2p256Sqrt returns
|
||
// false and e is unchanged. e and x can overlap.
|
||
func sm2p256Sqrt(e, x *fiat.SM2P256Element) (isSquare bool) {
|
||
candidate := new(fiat.SM2P256Element)
|
||
sm2p256SqrtCandidate(candidate, x)
|
||
square := new(fiat.SM2P256Element).Square(candidate)
|
||
if square.Equal(x) != 1 {
|
||
return false
|
||
}
|
||
e.Set(candidate)
|
||
return true
|
||
}
|
||
|
||
// sm2p256SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||
func sm2p256SqrtCandidate(z, x *fiat.SM2P256Element) {
|
||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||
//
|
||
// The sequence of 13 multiplications and 253 squarings is derived from the
|
||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||
//
|
||
// _10 = 2*1
|
||
// _11 = 1 + _10
|
||
// _110 = 2*_11
|
||
// _111 = 1 + _110
|
||
// _1110 = 2*_111
|
||
// _1111 = 1 + _1110
|
||
// _11110 = 2*_1111
|
||
// _111100 = 2*_11110
|
||
// _1111000 = 2*_111100
|
||
// i19 = (_1111000 << 3 + _111100) << 5 + _1111000
|
||
// x31 = (i19 << 2 + _11110) << 14 + i19 + _111
|
||
// i42 = x31 << 4
|
||
// i73 = i42 << 31
|
||
// i74 = i42 + i73
|
||
// i171 = (i73 << 32 + i74) << 62 + i74 + _1111
|
||
// return (i171 << 32 + 1) << 62
|
||
//
|
||
var t0 = new(fiat.SM2P256Element)
|
||
var t1 = new(fiat.SM2P256Element)
|
||
var t2 = new(fiat.SM2P256Element)
|
||
var t3 = new(fiat.SM2P256Element)
|
||
var t4 = new(fiat.SM2P256Element)
|
||
|
||
z.Square(x)
|
||
z.Mul(x, z)
|
||
z.Square(z)
|
||
t0.Mul(x, z)
|
||
z.Square(t0)
|
||
z.Mul(x, z)
|
||
t2.Square(z)
|
||
t3.Square(t2)
|
||
t1.Square(t3)
|
||
p256Square(t4, t1, 3)
|
||
t3.Mul(t3, t4)
|
||
p256Square(t3, t3, 5)
|
||
t1.Mul(t1, t3)
|
||
p256Square(t3, t1, 2)
|
||
t2.Mul(t2, t3)
|
||
p256Square(t2, t2, 14)
|
||
t1.Mul(t1, t2)
|
||
t0.Mul(t0, t1)
|
||
p256Square(t0, t0, 4)
|
||
p256Square(t1, t0, 31)
|
||
t0.Mul(t0, t1)
|
||
p256Square(t1, t1, 32)
|
||
t1.Mul(t0, t1)
|
||
p256Square(t1, t1, 62)
|
||
t0.Mul(t0, t1)
|
||
z.Mul(z, t0)
|
||
p256Square(z, z, 32)
|
||
z.Mul(x, z)
|
||
p256Square(z, z, 62)
|
||
}
|
||
|
||
// p256Square sets e to the square of x, repeated n times > 1.
|
||
func p256Square(e, x *fiat.SM2P256Element, n int) {
|
||
e.Square(x)
|
||
for i := 1; i < n; i++ {
|
||
e.Square(e)
|
||
}
|
||
}
|