gmsm/internal/sm2ec/sm2p256.go

528 lines
19 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate.go. DO NOT EDIT.
//go:build !amd64 && !arm64 || purego
// +build !amd64,!arm64 purego
package sm2ec
import (
"crypto/subtle"
"errors"
"github.com/emmansun/gmsm/internal/sm2ec/fiat"
"sync"
)
// sm2p256ElementLength is the length of an element of the base or scalar field,
// which have the same bytes length for all NIST P curves.
const sm2p256ElementLength = 32
// SM2P256Point is a SM2P256 point. The zero value is NOT valid.
type SM2P256Point struct {
// The point is represented in projective coordinates (X:Y:Z),
// where x = X/Z and y = Y/Z.
x, y, z *fiat.SM2P256Element
}
// NewSM2P256Point returns a new SM2P256Point representing the point at infinity point.
func NewSM2P256Point() *SM2P256Point {
return &SM2P256Point{
x: new(fiat.SM2P256Element),
y: new(fiat.SM2P256Element).One(),
z: new(fiat.SM2P256Element),
}
}
// SetGenerator sets p to the canonical generator and returns p.
func (p *SM2P256Point) SetGenerator() *SM2P256Point {
p.x.SetBytes([]byte{0x32, 0xc4, 0xae, 0x2c, 0x1f, 0x19, 0x81, 0x19, 0x5f, 0x99, 0x4, 0x46, 0x6a, 0x39, 0xc9, 0x94, 0x8f, 0xe3, 0xb, 0xbf, 0xf2, 0x66, 0xb, 0xe1, 0x71, 0x5a, 0x45, 0x89, 0x33, 0x4c, 0x74, 0xc7})
p.y.SetBytes([]byte{0xbc, 0x37, 0x36, 0xa2, 0xf4, 0xf6, 0x77, 0x9c, 0x59, 0xbd, 0xce, 0xe3, 0x6b, 0x69, 0x21, 0x53, 0xd0, 0xa9, 0x87, 0x7c, 0xc6, 0x2a, 0x47, 0x40, 0x2, 0xdf, 0x32, 0xe5, 0x21, 0x39, 0xf0, 0xa0})
p.z.One()
return p
}
// Set sets p = q and returns p.
func (p *SM2P256Point) Set(q *SM2P256Point) *SM2P256Point {
p.x.Set(q.x)
p.y.Set(q.y)
p.z.Set(q.z)
return p
}
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
// the curve, it returns nil and an error, and the receiver is unchanged.
// Otherwise, it returns p.
func (p *SM2P256Point) SetBytes(b []byte) (*SM2P256Point, error) {
switch {
// Point at infinity.
case len(b) == 1 && b[0] == 0:
return p.Set(NewSM2P256Point()), nil
// Uncompressed form.
case len(b) == 1+2*sm2p256ElementLength && b[0] == 4:
x, err := new(fiat.SM2P256Element).SetBytes(b[1 : 1+sm2p256ElementLength])
if err != nil {
return nil, err
}
y, err := new(fiat.SM2P256Element).SetBytes(b[1+sm2p256ElementLength:])
if err != nil {
return nil, err
}
if err := sm2p256CheckOnCurve(x, y); err != nil {
return nil, err
}
p.x.Set(x)
p.y.Set(y)
p.z.One()
return p, nil
// Compressed form.
case len(b) == 1+sm2p256ElementLength && (b[0] == 2 || b[0] == 3):
x, err := new(fiat.SM2P256Element).SetBytes(b[1:])
if err != nil {
return nil, err
}
// y² = x³ - 3x + b
y := sm2p256Polynomial(new(fiat.SM2P256Element), x)
if !sm2p256Sqrt(y, y) {
return nil, errors.New("invalid SM2P256 compressed point encoding")
}
// Select the positive or negative root, as indicated by the least
// significant bit, based on the encoding type byte.
otherRoot := new(fiat.SM2P256Element)
otherRoot.Sub(otherRoot, y)
cond := y.Bytes()[sm2p256ElementLength-1]&1 ^ b[0]&1
y.Select(otherRoot, y, int(cond))
p.x.Set(x)
p.y.Set(y)
p.z.One()
return p, nil
default:
return nil, errors.New("invalid SM2P256 point encoding")
}
}
var _sm2p256B *fiat.SM2P256Element
var _sm2p256BOnce sync.Once
func sm2p256B() *fiat.SM2P256Element {
_sm2p256BOnce.Do(func() {
_sm2p256B, _ = new(fiat.SM2P256Element).SetBytes([]byte{0x28, 0xe9, 0xfa, 0x9e, 0x9d, 0x9f, 0x5e, 0x34, 0x4d, 0x5a, 0x9e, 0x4b, 0xcf, 0x65, 0x9, 0xa7, 0xf3, 0x97, 0x89, 0xf5, 0x15, 0xab, 0x8f, 0x92, 0xdd, 0xbc, 0xbd, 0x41, 0x4d, 0x94, 0xe, 0x93})
})
return _sm2p256B
}
// sm2p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
func sm2p256Polynomial(y2, x *fiat.SM2P256Element) *fiat.SM2P256Element {
y2.Square(x)
y2.Mul(y2, x)
threeX := new(fiat.SM2P256Element).Add(x, x)
threeX.Add(threeX, x)
y2.Sub(y2, threeX)
return y2.Add(y2, sm2p256B())
}
func sm2p256CheckOnCurve(x, y *fiat.SM2P256Element) error {
// y² = x³ - 3x + b
rhs := sm2p256Polynomial(new(fiat.SM2P256Element), x)
lhs := new(fiat.SM2P256Element).Square(y)
if rhs.Equal(lhs) != 1 {
return errors.New("SM2P256 point not on curve")
}
return nil
}
// Bytes returns the uncompressed or infinity encoding of p, as specified in
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
// infinity is shorter than all other encodings.
func (p *SM2P256Point) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [1 + 2*sm2p256ElementLength]byte
return p.bytes(&out)
}
func (p *SM2P256Point) bytes(out *[1 + 2*sm2p256ElementLength]byte) []byte {
if p.z.IsZero() == 1 {
return append(out[:0], 0)
}
zinv := new(fiat.SM2P256Element).Invert(p.z)
x := new(fiat.SM2P256Element).Mul(p.x, zinv)
y := new(fiat.SM2P256Element).Mul(p.y, zinv)
buf := append(out[:0], 4)
buf = append(buf, x.Bytes()...)
buf = append(buf, y.Bytes()...)
return buf
}
// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
func (p *SM2P256Point) BytesX() ([]byte, error) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [sm2p256ElementLength]byte
return p.bytesX(&out)
}
func (p *SM2P256Point) bytesX(out *[sm2p256ElementLength]byte) ([]byte, error) {
if p.z.IsZero() == 1 {
return nil, errors.New("SM2P256 point is the point at infinity")
}
zinv := new(fiat.SM2P256Element).Invert(p.z)
x := new(fiat.SM2P256Element).Mul(p.x, zinv)
return append(out[:0], x.Bytes()...), nil
}
// BytesCompressed returns the compressed or infinity encoding of p, as
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
// point at infinity is shorter than all other encodings.
func (p *SM2P256Point) BytesCompressed() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [1 + sm2p256ElementLength]byte
return p.bytesCompressed(&out)
}
func (p *SM2P256Point) bytesCompressed(out *[1 + sm2p256ElementLength]byte) []byte {
if p.z.IsZero() == 1 {
return append(out[:0], 0)
}
zinv := new(fiat.SM2P256Element).Invert(p.z)
x := new(fiat.SM2P256Element).Mul(p.x, zinv)
y := new(fiat.SM2P256Element).Mul(p.y, zinv)
// Encode the sign of the y coordinate (indicated by the least significant
// bit) as the encoding type (2 or 3).
buf := append(out[:0], 2)
buf[0] |= y.Bytes()[sm2p256ElementLength-1] & 1
buf = append(buf, x.Bytes()...)
return buf
}
// Add sets q = p1 + p2, and returns q. The points may overlap.
func (q *SM2P256Point) Add(p1, p2 *SM2P256Point) *SM2P256Point {
// Complete addition formula for a = -3 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
t0 := new(fiat.SM2P256Element).Mul(p1.x, p2.x) // t0 := X1 * X2
t1 := new(fiat.SM2P256Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2
t2 := new(fiat.SM2P256Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2
t3 := new(fiat.SM2P256Element).Add(p1.x, p1.y) // t3 := X1 + Y1
t4 := new(fiat.SM2P256Element).Add(p2.x, p2.y) // t4 := X2 + Y2
t3.Mul(t3, t4) // t3 := t3 * t4
t4.Add(t0, t1) // t4 := t0 + t1
t3.Sub(t3, t4) // t3 := t3 - t4
t4.Add(p1.y, p1.z) // t4 := Y1 + Z1
x3 := new(fiat.SM2P256Element).Add(p2.y, p2.z) // X3 := Y2 + Z2
t4.Mul(t4, x3) // t4 := t4 * X3
x3.Add(t1, t2) // X3 := t1 + t2
t4.Sub(t4, x3) // t4 := t4 - X3
x3.Add(p1.x, p1.z) // X3 := X1 + Z1
y3 := new(fiat.SM2P256Element).Add(p2.x, p2.z) // Y3 := X2 + Z2
x3.Mul(x3, y3) // X3 := X3 * Y3
y3.Add(t0, t2) // Y3 := t0 + t2
y3.Sub(x3, y3) // Y3 := X3 - Y3
z3 := new(fiat.SM2P256Element).Mul(sm2p256B(), t2) // Z3 := b * t2
x3.Sub(y3, z3) // X3 := Y3 - Z3
z3.Add(x3, x3) // Z3 := X3 + X3
x3.Add(x3, z3) // X3 := X3 + Z3
z3.Sub(t1, x3) // Z3 := t1 - X3
x3.Add(t1, x3) // X3 := t1 + X3
y3.Mul(sm2p256B(), y3) // Y3 := b * Y3
t1.Add(t2, t2) // t1 := t2 + t2
t2.Add(t1, t2) // t2 := t1 + t2
y3.Sub(y3, t2) // Y3 := Y3 - t2
y3.Sub(y3, t0) // Y3 := Y3 - t0
t1.Add(y3, y3) // t1 := Y3 + Y3
y3.Add(t1, y3) // Y3 := t1 + Y3
t1.Add(t0, t0) // t1 := t0 + t0
t0.Add(t1, t0) // t0 := t1 + t0
t0.Sub(t0, t2) // t0 := t0 - t2
t1.Mul(t4, y3) // t1 := t4 * Y3
t2.Mul(t0, y3) // t2 := t0 * Y3
y3.Mul(x3, z3) // Y3 := X3 * Z3
y3.Add(y3, t2) // Y3 := Y3 + t2
x3.Mul(t3, x3) // X3 := t3 * X3
x3.Sub(x3, t1) // X3 := X3 - t1
z3.Mul(t4, z3) // Z3 := t4 * Z3
t1.Mul(t3, t0) // t1 := t3 * t0
z3.Add(z3, t1) // Z3 := Z3 + t1
q.x.Set(x3)
q.y.Set(y3)
q.z.Set(z3)
return q
}
// Double sets q = p + p, and returns q. The points may overlap.
func (q *SM2P256Point) Double(p *SM2P256Point) *SM2P256Point {
// Complete addition formula for a = -3 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
t0 := new(fiat.SM2P256Element).Square(p.x) // t0 := X ^ 2
t1 := new(fiat.SM2P256Element).Square(p.y) // t1 := Y ^ 2
t2 := new(fiat.SM2P256Element).Square(p.z) // t2 := Z ^ 2
t3 := new(fiat.SM2P256Element).Mul(p.x, p.y) // t3 := X * Y
t3.Add(t3, t3) // t3 := t3 + t3
z3 := new(fiat.SM2P256Element).Mul(p.x, p.z) // Z3 := X * Z
z3.Add(z3, z3) // Z3 := Z3 + Z3
y3 := new(fiat.SM2P256Element).Mul(sm2p256B(), t2) // Y3 := b * t2
y3.Sub(y3, z3) // Y3 := Y3 - Z3
x3 := new(fiat.SM2P256Element).Add(y3, y3) // X3 := Y3 + Y3
y3.Add(x3, y3) // Y3 := X3 + Y3
x3.Sub(t1, y3) // X3 := t1 - Y3
y3.Add(t1, y3) // Y3 := t1 + Y3
y3.Mul(x3, y3) // Y3 := X3 * Y3
x3.Mul(x3, t3) // X3 := X3 * t3
t3.Add(t2, t2) // t3 := t2 + t2
t2.Add(t2, t3) // t2 := t2 + t3
z3.Mul(sm2p256B(), z3) // Z3 := b * Z3
z3.Sub(z3, t2) // Z3 := Z3 - t2
z3.Sub(z3, t0) // Z3 := Z3 - t0
t3.Add(z3, z3) // t3 := Z3 + Z3
z3.Add(z3, t3) // Z3 := Z3 + t3
t3.Add(t0, t0) // t3 := t0 + t0
t0.Add(t3, t0) // t0 := t3 + t0
t0.Sub(t0, t2) // t0 := t0 - t2
t0.Mul(t0, z3) // t0 := t0 * Z3
y3.Add(y3, t0) // Y3 := Y3 + t0
t0.Mul(p.y, p.z) // t0 := Y * Z
t0.Add(t0, t0) // t0 := t0 + t0
z3.Mul(t0, z3) // Z3 := t0 * Z3
x3.Sub(x3, z3) // X3 := X3 - Z3
z3.Mul(t0, t1) // Z3 := t0 * t1
z3.Add(z3, z3) // Z3 := Z3 + Z3
z3.Add(z3, z3) // Z3 := Z3 + Z3
q.x.Set(x3)
q.y.Set(y3)
q.z.Set(z3)
return q
}
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *SM2P256Point) Select(p1, p2 *SM2P256Point, cond int) *SM2P256Point {
q.x.Select(p1.x, p2.x, cond)
q.y.Select(p1.y, p2.y, cond)
q.z.Select(p1.z, p2.z, cond)
return q
}
// A sm2p256Table holds the first 15 multiples of a point at offset -1, so [1]P
// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
// point.
type sm2p256Table [15]*SM2P256Point
// Select selects the n-th multiple of the table base point into p. It works in
// constant time by iterating over every entry of the table. n must be in [0, 15].
func (table *sm2p256Table) Select(p *SM2P256Point, n uint8) {
if n >= 16 {
panic("sm2ec: internal error: sm2p256Table called with out-of-bounds value")
}
p.Set(NewSM2P256Point())
for i := uint8(1); i < 16; i++ {
cond := subtle.ConstantTimeByteEq(i, n)
p.Select(table[i-1], p, cond)
}
}
// ScalarMult sets p = scalar * q, and returns p.
func (p *SM2P256Point) ScalarMult(q *SM2P256Point, scalar []byte) (*SM2P256Point, error) {
// Compute a sm2p256Table for the base point q. The explicit NewSM2P256Point
// calls get inlined, letting the allocations live on the stack.
var table = sm2p256Table{NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(),
NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(),
NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(),
NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point(), NewSM2P256Point()}
table[0].Set(q)
for i := 1; i < 15; i += 2 {
table[i].Double(table[i/2])
table[i+1].Add(table[i], q)
}
// Instead of doing the classic double-and-add chain, we do it with a
// four-bit window: we double four times, and then add [0-15]P.
t := NewSM2P256Point()
p.Set(NewSM2P256Point())
for i, byte := range scalar {
// No need to double on the first iteration, as p is the identity at
// this point, and [N]∞ = ∞.
if i != 0 {
p.Double(p)
p.Double(p)
p.Double(p)
p.Double(p)
}
windowValue := byte >> 4
table.Select(t, windowValue)
p.Add(p, t)
p.Double(p)
p.Double(p)
p.Double(p)
p.Double(p)
windowValue = byte & 0b1111
table.Select(t, windowValue)
p.Add(p, t)
}
return p, nil
}
var sm2p256GeneratorTable *[sm2p256ElementLength * 2]sm2p256Table
var sm2p256GeneratorTableOnce sync.Once
// generatorTable returns a sequence of sm2p256Tables. The first table contains
// multiples of G. Each successive table is the previous table doubled four
// times.
func (p *SM2P256Point) generatorTable() *[sm2p256ElementLength * 2]sm2p256Table {
sm2p256GeneratorTableOnce.Do(func() {
sm2p256GeneratorTable = new([sm2p256ElementLength * 2]sm2p256Table)
base := NewSM2P256Point().SetGenerator()
for i := 0; i < sm2p256ElementLength*2; i++ {
sm2p256GeneratorTable[i][0] = NewSM2P256Point().Set(base)
for j := 1; j < 15; j++ {
sm2p256GeneratorTable[i][j] = NewSM2P256Point().Add(sm2p256GeneratorTable[i][j-1], base)
}
base.Double(base)
base.Double(base)
base.Double(base)
base.Double(base)
}
})
return sm2p256GeneratorTable
}
// ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and
// returns p.
func (p *SM2P256Point) ScalarBaseMult(scalar []byte) (*SM2P256Point, error) {
if len(scalar) != sm2p256ElementLength {
return nil, errors.New("invalid scalar length")
}
tables := p.generatorTable()
// This is also a scalar multiplication with a four-bit window like in
// ScalarMult, but in this case the doublings are precomputed. The value
// [windowValue]G added at iteration k would normally get doubled
// (totIterations-k)×4 times, but with a larger precomputation we can
// instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
// doublings between iterations.
t := NewSM2P256Point()
p.Set(NewSM2P256Point())
tableIndex := len(tables) - 1
for _, byte := range scalar {
windowValue := byte >> 4
tables[tableIndex].Select(t, windowValue)
p.Add(p, t)
tableIndex--
windowValue = byte & 0b1111
tables[tableIndex].Select(t, windowValue)
p.Add(p, t)
tableIndex--
}
return p, nil
}
// sm2p256Sqrt sets e to a square root of x. If x is not a square, sm2p256Sqrt returns
// false and e is unchanged. e and x can overlap.
func sm2p256Sqrt(e, x *fiat.SM2P256Element) (isSquare bool) {
candidate := new(fiat.SM2P256Element)
sm2p256SqrtCandidate(candidate, x)
square := new(fiat.SM2P256Element).Square(candidate)
if square.Equal(x) != 1 {
return false
}
e.Set(candidate)
return true
}
// sm2p256SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
func sm2p256SqrtCandidate(z, x *fiat.SM2P256Element) {
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
//
// The sequence of 13 multiplications and 253 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
//
// _10 = 2*1
// _11 = 1 + _10
// _110 = 2*_11
// _111 = 1 + _110
// _1110 = 2*_111
// _1111 = 1 + _1110
// _11110 = 2*_1111
// _111100 = 2*_11110
// _1111000 = 2*_111100
// i19 = (_1111000 << 3 + _111100) << 5 + _1111000
// x31 = (i19 << 2 + _11110) << 14 + i19 + _111
// i42 = x31 << 4
// i73 = i42 << 31
// i74 = i42 + i73
// i171 = (i73 << 32 + i74) << 62 + i74 + _1111
// return (i171 << 32 + 1) << 62
//
var t0 = new(fiat.SM2P256Element)
var t1 = new(fiat.SM2P256Element)
var t2 = new(fiat.SM2P256Element)
var t3 = new(fiat.SM2P256Element)
var t4 = new(fiat.SM2P256Element)
z.Square(x)
z.Mul(x, z)
z.Square(z)
t0.Mul(x, z)
z.Square(t0)
z.Mul(x, z)
t2.Square(z)
t3.Square(t2)
t1.Square(t3)
t4.Square(t1)
for s := 1; s < 3; s++ {
t4.Square(t4)
}
t3.Mul(t3, t4)
for s := 0; s < 5; s++ {
t3.Square(t3)
}
t1.Mul(t1, t3)
t3.Square(t1)
for s := 1; s < 2; s++ {
t3.Square(t3)
}
t2.Mul(t2, t3)
for s := 0; s < 14; s++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
t0.Mul(t0, t1)
for s := 0; s < 4; s++ {
t0.Square(t0)
}
t1.Square(t0)
for s := 1; s < 31; s++ {
t1.Square(t1)
}
t0.Mul(t0, t1)
for s := 0; s < 32; s++ {
t1.Square(t1)
}
t1.Mul(t0, t1)
for s := 0; s < 62; s++ {
t1.Square(t1)
}
t0.Mul(t0, t1)
z.Mul(z, t0)
for s := 0; s < 32; s++ {
z.Square(z)
}
z.Mul(x, z)
for s := 0; s < 62; s++ {
z.Square(z)
}
}