gmsm/cipher/mur.go
2025-09-26 15:44:43 +08:00

186 lines
5.8 KiB
Go

package cipher
import (
"crypto/cipher"
"crypto/subtle"
"errors"
"github.com/emmansun/gmsm/internal/alias"
"github.com/emmansun/gmsm/internal/byteorder"
)
type StreamCipherCreator func(key, iv []byte) (cipher.Stream, error)
const (
maxIVSize = 32
maxTagSize = 16
)
type mur struct {
streamCipherCreator StreamCipherCreator
tagSize int
// productTable contains the first sixteen powers of the hash key.
// However, they are in bit reversed order.
productTable [16]ghashFieldElement
}
// NewMUR creates a new MUR (misuse-resistant AEAD mode) instance with a default tag size of 16 bytes.
// It takes a StreamCipherCreator function for generating the underlying stream cipher and an ghash key.
func NewMUR(streamCipherCreator StreamCipherCreator, hkey []byte) (*mur, error) {
return NewMURWithTagSize(streamCipherCreator, hkey, 16)
}
// NewMURWithTagSize creates a new MUR (misuse-resistant AEAD mode) instance with the specified tag size.
func NewMURWithTagSize(streamCipherCreator StreamCipherCreator, hkey []byte, tagSize int) (*mur, error) {
if len(hkey) != ghashBlockSize {
return nil, errors.New("cipher: invalid hash key length")
}
if tagSize < 8 || tagSize > 16 {
return nil, errors.New("cipher: invalid tag size")
}
c := &mur{}
c.streamCipherCreator = streamCipherCreator
c.tagSize = tagSize
// We precompute 16 multiples of |key|. However, when we do lookups
// into this table we'll be using bits from a field element and
// therefore the bits will be in the reverse order. So normally one
// would expect, say, 4*key to be in index 4 of the table but due to
// this bit ordering it will actually be in index 0010 (base 2) = 2.
x := ghashFieldElement{
byteorder.BEUint64(hkey[:8]),
byteorder.BEUint64(hkey[8:ghashBlockSize]),
}
c.productTable[reverseBits(1)] = x
for i := 2; i < 16; i += 2 {
c.productTable[reverseBits(i)] = ghashDouble(&c.productTable[reverseBits(i/2)])
c.productTable[reverseBits(i+1)] = ghashAdd(&c.productTable[reverseBits(i)], &x)
}
return c, nil
}
// Overhead returns the maximum difference between the lengths of a
// plaintext and its ciphertext.
func (g *mur) Overhead() int {
return g.tagSize
}
// Seal encrypts and authenticates plaintext, authenticates the
// additional data and appends the result to dst, returning the updated
// slice. The nonce must be NonceSize() bytes long and unique for all
// time, for a given key.
//
// To reuse plaintext's storage for the encrypted output, use plaintext[:0]
// as dst. Otherwise, the remaining capacity of dst must not overlap plaintext.
// dst and additionalData may not overlap.
func (g *mur) Seal(iv, key1, key2, dst, plaintext, additionalData []byte) ([]byte, error) {
ret, out := alias.SliceForAppend(dst, len(plaintext)+g.tagSize)
if alias.InexactOverlap(out, plaintext) {
panic("cipher: invalid buffer overlap")
}
var (
tmpIV [maxIVSize]byte
tag [maxTagSize]byte
ivLen = len(iv)
)
if ivLen > maxIVSize {
panic("cipher: iv too large")
}
copy(tmpIV[:], iv)
g.murAuth(tmpIV[:], plaintext, additionalData)
subtle.XORBytes(tmpIV[:], tmpIV[:], iv)
tagStream, err := g.streamCipherCreator(key2, tmpIV[:ivLen])
if err != nil {
return nil, err
}
tagStream.XORKeyStream(tag[:g.tagSize], tag[:g.tagSize])
clear(tmpIV[:])
subtle.XORBytes(tmpIV[:], iv, tag[:])
dataStream, err := g.streamCipherCreator(key1, tmpIV[:ivLen])
if err != nil {
return nil, err
}
dataStream.XORKeyStream(out, plaintext)
copy(out[len(plaintext):], tag[:g.tagSize])
return ret, nil
}
// Open decrypts and authenticates ciphertext, authenticates the
// additional data and, if successful, appends the resulting plaintext
// to dst, returning the updated slice. The nonce must be NonceSize()
// bytes long and both it and the additional data must match the
// value passed to Seal.
//
// To reuse ciphertext's storage for the decrypted output, use ciphertext[:0]
// as dst. Otherwise, the remaining capacity of dst must not overlap ciphertext.
// dst and additionalData may not overlap.
//
// Even if the function fails, the contents of dst, up to its capacity,
// may be overwritten.
func (g *mur) Open(iv, key1, key2, dst, ciphertext, additionalData []byte) ([]byte, error) {
if len(ciphertext) < g.tagSize {
return nil, errOpen
}
ret, out := alias.SliceForAppend(dst, len(ciphertext)-g.tagSize)
if alias.InexactOverlap(out, ciphertext) {
panic("cipher: invalid buffer overlap of output and input")
}
if alias.AnyOverlap(out, additionalData) {
panic("cipher: invalid buffer overlap of output and additional data")
}
tag := ciphertext[len(ciphertext)-g.tagSize:]
ciphertext = ciphertext[:len(ciphertext)-g.tagSize]
var (
tmpIV [maxIVSize]byte
calTag [maxTagSize]byte
ivLen = len(iv)
)
if ivLen > maxIVSize {
panic("cipher: iv too large")
}
copy(tmpIV[:], tag)
subtle.XORBytes(tmpIV[:], iv, tmpIV[:])
dataStream, err := g.streamCipherCreator(key1, tmpIV[:ivLen])
if err != nil {
return nil, err
}
dataStream.XORKeyStream(out, ciphertext)
clear(tmpIV[:])
g.murAuth(tmpIV[:], out, additionalData)
subtle.XORBytes(tmpIV[:], tmpIV[:], iv)
tagStream, err := g.streamCipherCreator(key2, tmpIV[:ivLen])
if err != nil {
return nil, err
}
tagStream.XORKeyStream(calTag[:g.tagSize], calTag[:g.tagSize])
if subtle.ConstantTimeCompare(tag, calTag[:g.tagSize]) != 1 {
clear(out)
return nil, errOpen
}
return ret, nil
}
func (g *mur) murAuth(out []byte, plaintext, additionalData []byte) {
var tag [ghashBlockSize]byte
tagField := ghashFieldElement{}
ghashUpdate(&g.productTable, &tagField, additionalData)
ghashUpdate(&g.productTable, &tagField, plaintext)
lenBlock := make([]byte, 16)
byteorder.BEPutUint64(lenBlock[:8], uint64(len(additionalData))*8)
byteorder.BEPutUint64(lenBlock[8:], uint64(len(plaintext))*8)
ghashUpdate(&g.productTable, &tagField, lenBlock)
byteorder.BEPutUint64(tag[:], tagField.low)
byteorder.BEPutUint64(tag[8:], tagField.high)
copy(out, tag[:])
}