gmsm/zuc/eia256.go
2023-02-02 15:58:31 +08:00

240 lines
5.1 KiB
Go

package zuc
import (
"encoding/binary"
"fmt"
)
type ZUC256Mac struct {
zucState32
k0 [8]uint32
t []uint32
x [chunk]byte
nx int
len uint64
tagSize int
initState zucState32
}
// NewHash256 create hash for zuc-256 eia, with arguments key, iv and tagSize.
// Key size is 32 in bytes, iv size is 23 in bytes, tagSize supports 4/8/16 in bytes.
// The larger the tag size, the worse the performance.
func NewHash256(key, iv []byte, tagSize int) (*ZUC256Mac, error) {
k := len(key)
ivLen := len(iv)
mac := &ZUC256Mac{}
var d []byte
switch tagSize {
default:
return nil, fmt.Errorf("zuc/eia: invalid tag size %d, support 4/8/16 in bytes", tagSize)
case 4:
d = zuc256_d[0][:]
case 8:
d = zuc256_d[1][:]
case 16:
d = zuc256_d[2][:]
}
mac.tagSize = tagSize
mac.t = make([]uint32, mac.tagSize/4)
switch k {
default:
return nil, fmt.Errorf("zuc/eia: invalid key size %d, expect 32 in bytes", k)
case 32: // ZUC-256
if ivLen != IVSize256 {
return nil, fmt.Errorf("zuc/eia: invalid iv size %d, expect %d in bytes", ivLen, IVSize256)
}
mac.loadKeyIV32(key, iv, d)
}
// initialization
for i := 0; i < 32; i++ {
mac.bitReorganization()
w := mac.f32()
mac.enterInitMode(w >> 1)
}
// work state
mac.bitReorganization()
mac.f32()
mac.enterWorkMode()
mac.initState.r1 = mac.r1
mac.initState.r2 = mac.r2
copy(mac.initState.lfsr[:], mac.lfsr[:])
mac.Reset()
return mac, nil
}
func (m *ZUC256Mac) Size() int {
return m.tagSize
}
func (m *ZUC256Mac) BlockSize() int {
return chunk
}
// Reset resets the Hash to its initial state.
func (m *ZUC256Mac) Reset() {
m.nx = 0
m.len = 0
m.r1 = m.initState.r1
m.r2 = m.initState.r2
copy(m.lfsr[:], m.initState.lfsr[:])
m.genKeywords(m.t)
m.genKeywords(m.k0[:4])
}
func block256Generic(m *ZUC256Mac, p []byte) {
var k64, t64 uint64
if m.tagSize == 4 {
t64 = uint64(m.t[0]) << 32
}
tagWords := m.tagSize / 4
for len(p) >= chunk {
m.genKeywords(m.k0[4:])
for l := 0; l < 4; l++ {
w := binary.BigEndian.Uint32(p[l*4:])
switch m.tagSize {
case 4:
k64 = uint64(m.k0[l])<<32 | uint64(m.k0[l+1])
for j := 0; j < 32; j++ {
t64 ^= ^(uint64(w>>31) - 1) & k64
w <<= 1
k64 <<= 1
}
default:
k1 := m.k0[tagWords+l]
for i := 0; i < 32; i++ {
wBit := ^(w>>31 - 1)
for j := 0; j < tagWords; j++ {
m.t[j] ^= wBit & m.k0[j]
}
w <<= 1
var j int
for j = 0; j < tagWords-1; j++ {
m.k0[j] = (m.k0[j] << 1) | (m.k0[j+1] >> 31)
}
m.k0[j] = (m.k0[j] << 1) | (k1 >> 31)
k1 <<= 1
}
}
}
if tagWords != 4 {
copy(m.k0[:4], m.k0[4:])
}
p = p[chunk:]
}
if m.tagSize == 4 {
m.t[0] = uint32(t64 >> 32)
}
}
func (m *ZUC256Mac) Write(p []byte) (nn int, err error) {
nn = len(p)
m.len += uint64(nn)
if m.nx > 0 {
n := copy(m.x[m.nx:], p)
m.nx += n
if m.nx == chunk {
block256(m, m.x[:])
m.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
block256(m, p[:n])
p = p[n:]
}
if len(p) > 0 {
m.nx = copy(m.x[:], p)
}
return
}
func (m *ZUC256Mac) checkSum(additionalBits int, b byte) []byte {
if m.nx >= chunk {
panic("m.nx >= 16")
}
kIdx := 0
if m.nx > 0 || additionalBits > 0 {
m.x[m.nx] = b
m.genKeywords(m.k0[4:])
nRemainBits := 8*m.nx + additionalBits
words := (nRemainBits + 31) / 32
for l := 0; l < words-1; l++ {
w := binary.BigEndian.Uint32(m.x[l*4:])
k1 := m.k0[m.tagSize/4+l]
for i := 0; i < 32; i++ {
wBit := ^(w>>31 - 1)
for j := 0; j < m.tagSize/4; j++ {
m.t[j] ^= wBit & m.k0[j]
}
w <<= 1
var j int
for j = 0; j < m.tagSize/4-1; j++ {
m.k0[j] = (m.k0[j] << 1) | (m.k0[j+1] >> 31)
}
m.k0[j] = (m.k0[j] << 1) | (k1 >> 31)
k1 <<= 1
}
}
nRemainBits -= (words - 1) * 32
kIdx = words - 1
if nRemainBits > 0 {
w := binary.BigEndian.Uint32(m.x[(words-1)*4:])
for i := 0; i < nRemainBits; i++ {
wBit := ^(w>>31 - 1)
for j := 0; j < m.tagSize/4; j++ {
m.t[j] ^= wBit & m.k0[j+kIdx]
}
w <<= 1
var j int
for j = 0; j < m.tagSize/4; j++ {
m.k0[j+kIdx] = (m.k0[j+kIdx] << 1) | (m.k0[kIdx+j+1] >> 31)
}
m.k0[j+kIdx] <<= 1
}
}
}
digest := make([]byte, m.tagSize)
for j := 0; j < m.tagSize/4; j++ {
m.t[j] ^= m.k0[j+kIdx]
binary.BigEndian.PutUint32(digest[j*4:], m.t[j])
}
return digest
}
// Finish this function hash nbits data in p and return mac value
// In general, we will use byte level function, this is just for test/verify.
func (m *ZUC256Mac) Finish(p []byte, nbits int) []byte {
if len(p) < (nbits+7)/8 {
panic("invalid p length")
}
nbytes := nbits / 8
nRemainBits := nbits - nbytes*8
if nbytes > 0 {
m.Write(p[:nbytes])
}
var b byte
if nRemainBits > 0 {
b = p[nbytes]
}
digest := m.checkSum(nRemainBits, b)
return digest[:]
}
// Sum appends the current hash to in and returns the resulting slice.
// It does not change the underlying hash state.
func (m *ZUC256Mac) Sum(in []byte) []byte {
// Make a copy of d so that caller can keep writing and summing.
d0 := *m
d0.t = make([]uint32, len(m.t))
copy(d0.t, m.t)
hash := d0.checkSum(0, 0)
return append(in, hash[:]...)
}