// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build (amd64 && !generic) || (arm64 && !generic) // +build amd64,!generic arm64,!generic package sm2 import ( "encoding/binary" "reflect" "testing" ) func TestP256PrecomputedTable(t *testing.T) { basePoint := []uint64{ 0x61328990f418029e, 0x3e7981eddca6c050, 0xd6a1ed99ac24c3c3, 0x91167a5ee1c13b05, 0xc1354e593c2d0ddd, 0xc1f5e5788d3295fa, 0x8d4cfb066e2a48f8, 0x63cd65d481d735bd, 0x0000000000000001, 0x00000000ffffffff, 0x0000000000000000, 0x0000000100000000, } t1 := make([]uint64, 12) t2 := make([]uint64, 12) copy(t2, basePoint) zInv := make([]uint64, 4) zInvSq := make([]uint64, 4) for j := 0; j < 32; j++ { copy(t1, t2) for i := 0; i < 43; i++ { // The window size is 6 so we need to double 6 times. if i != 0 { for k := 0; k < 6; k++ { p256PointDoubleAsm(t1, t1) } } // Convert the point to affine form. (Its values are // still in Montgomery form however.) p256Inverse(zInv, t1[8:12]) p256Sqr(zInvSq, zInv, 1) p256Mul(zInv, zInv, zInvSq) p256Mul(t1[:4], t1[:4], zInvSq) p256Mul(t1[4:8], t1[4:8], zInv) copy(t1[8:12], basePoint[8:12]) buf := make([]byte, 8*8) for i, u := range t1[:8] { binary.LittleEndian.PutUint64(buf[i*8:i*8+8], u) } start := i*32*8*8 + j*8*8 if got, want := p256Precomputed[start:start+64], string(buf); !reflect.DeepEqual(got, want) { t.Fatalf("Unexpected table entry at [%d][%d:%d]: got %v, want %v", i, j*8, (j*8)+8, got, want) } } if j == 0 { p256PointDoubleAsm(t2, basePoint) } else { p256PointAddAsm(t2, t2, basePoint) } } }