package sm9 import "math/big" // For details of the algorithms used, see "Multiplication and Squaring on // Pairing-Friendly Fields, Devegili et al. // http://eprint.iacr.org/2006/471.pdf. // gfP2 implements a field of size p² as a quadratic extension of the base field // where i²=-2. type gfP2 struct { x, y gfP // value is xi+y. } func gfP2Decode(in *gfP2) *gfP2 { out := &gfP2{} montDecode(&out.x, &in.x) montDecode(&out.y, &in.y) return out } func (e *gfP2) String() string { return "(" + e.x.String() + ", " + e.y.String() + ")" } func (e *gfP2) Set(a *gfP2) *gfP2 { e.x.Set(&a.x) e.y.Set(&a.y) return e } func (e *gfP2) SetZero() *gfP2 { e.x = *zero e.y = *zero return e } func (e *gfP2) SetOne() *gfP2 { e.x = *zero e.y = *one return e } func (e *gfP2) SetU() *gfP2 { e.x = *one e.y = *zero return e } func (e *gfP2) SetFrobConstant() *gfP2 { e.x = *zero e.y = *frobConstant return e } func (e *gfP2) IsZero() bool { return e.x == *zero && e.y == *zero } func (e *gfP2) IsOne() bool { return e.x == *zero && e.y == *one } func (e *gfP2) Conjugate(a *gfP2) *gfP2 { e.y.Set(&a.y) gfpNeg(&e.x, &a.x) return e } func (e *gfP2) Neg(a *gfP2) *gfP2 { gfpNeg(&e.x, &a.x) gfpNeg(&e.y, &a.y) return e } func (e *gfP2) Add(a, b *gfP2) *gfP2 { gfpAdd(&e.x, &a.x, &b.x) gfpAdd(&e.y, &a.y, &b.y) return e } func (e *gfP2) Sub(a, b *gfP2) *gfP2 { gfpSub(&e.x, &a.x, &b.x) gfpSub(&e.y, &a.y, &b.y) return e } func (e *gfP2) Double(a *gfP2) *gfP2 { gfpAdd(&e.x, &a.x, &a.x) gfpAdd(&e.y, &a.y, &a.y) return e } func (e *gfP2) Triple(a *gfP2) *gfP2 { gfpAdd(&e.x, &a.x, &a.x) gfpAdd(&e.y, &a.y, &a.y) gfpAdd(&e.x, &e.x, &a.x) gfpAdd(&e.y, &e.y, &a.y) return e } // See "Multiplication and Squaring in Pairing-Friendly Fields", // http://eprint.iacr.org/2006/471.pdf // The Karatsuba method //(a0+a1*i)(b0+b1*i)=c0+c1*i, where //c0 = a0*b0 - 2a1*b1 //c1 = (a0 + a1)(b0 + b1) - a0*b0 - a1*b1 = a0*b1 + a1*b0 func (e *gfP2) Mul(a, b *gfP2) *gfP2 { tx, t := &gfP{}, &gfP{} gfpMul(tx, &a.x, &b.y) gfpMul(t, &b.x, &a.y) gfpAdd(tx, tx, t) ty := &gfP{} gfpMul(ty, &a.y, &b.y) gfpMul(t, &a.x, &b.x) gfpMul(t, t, two) gfpSub(ty, ty, t) e.x.Set(tx) e.y.Set(ty) return e } // MulU: a * b * i //(a0+a1*i)(b0+b1*i)*i=c0+c1*i, where //c1 = (a0*b0 - 2a1*b1)i //c0 = -2 * ((a0 + a1)(b0 + b1) - a0*b0 - a1*b1) = -2 * (a0*b1 + a1*b0) func (e *gfP2) MulU(a, b *gfP2) *gfP2 { // ty = -2 * (a0 * b1 + a1 * b0) ty, t := &gfP{}, &gfP{} gfpMul(ty, &a.x, &b.y) gfpMul(t, &b.x, &a.y) gfpAdd(ty, ty, t) gfpAdd(ty, ty, ty) gfpNeg(ty, ty) // tx = a0 * b0 - 2 * a1 * b1 tx := &gfP{} gfpMul(tx, &a.y, &b.y) gfpMul(t, &a.x, &b.x) gfpMul(t, t, two) gfpSub(tx, tx, t) e.x.Set(tx) e.y.Set(ty) return e } func (e *gfP2) Square(a *gfP2) *gfP2 { // Complex squaring algorithm: // (xi+y)² = y^2-2*x^2 + 2*i*x*y tx, ty := &gfP{}, &gfP{} gfpMul(tx, &a.x, &a.x) gfpMul(ty, &a.y, &a.y) gfpSub(ty, ty, tx) gfpSub(ty, ty, tx) gfpMul(tx, &a.x, &a.y) gfpAdd(tx, tx, tx) e.x.Set(tx) e.y.Set(ty) return e } func (e *gfP2) SquareU(a *gfP2) *gfP2 { // Complex squaring algorithm: // (xi+y)²*i = (y^2-2*x^2)i - 4*x*y tx, ty := &gfP{}, &gfP{} // tx = a0^2 - 2 * a1^2 gfpMul(ty, &a.x, &a.x) gfpMul(tx, &a.y, &a.y) gfpAdd(ty, ty, ty) gfpSub(tx, tx, ty) // ty = -4 * a0 * a1 gfpMul(ty, &a.x, &a.y) gfpAdd(ty, ty, ty) gfpAdd(ty, ty, ty) gfpNeg(ty, ty) e.x.Set(tx) e.y.Set(ty) return e } func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 { gfpMul(&e.x, &a.x, b) gfpMul(&e.y, &a.y, b) return e } func (e *gfP2) Invert(a *gfP2) *gfP2 { // See "Implementing cryptographic pairings", M. Scott, section 3.2. // ftp://136.206.11.249/pub/crypto/pairings.pdf t1, t2, t3 := &gfP{}, &gfP{}, &gfP{} gfpMul(t1, &a.x, &a.x) gfpAdd(t3, t1, t1) gfpMul(t2, &a.y, &a.y) gfpAdd(t3, t3, t2) inv := &gfP{} inv.Invert(t3) // inv = (2 * a.x ^ 2 + a.y ^ 2) ^ (-1) gfpNeg(t1, &a.x) gfpMul(&e.x, t1, inv) // x = - a.x * inv gfpMul(&e.y, &a.y, inv) // y = a.y * inv return e } func (e *gfP2) Exp(f *gfP2, power *big.Int) *gfP2 { sum := (&gfP2{}).SetOne() t := &gfP2{} for i := power.BitLen() - 1; i >= 0; i-- { t.Square(sum) if power.Bit(i) != 0 { sum.Mul(t, f) } else { sum.Set(t) } } e.Set(sum) return e } // (xi+y)^p = x * i^p + y // = x * i * i^(p-1) + y // = (-x)*i + y // here i^(p-1) = -1 func (e *gfP2) Frobenius(a *gfP2) *gfP2 { e.Conjugate(a) return e } // Sqrt method is only required when we implement compressed format func (e *gfP2) Sqrt(f *gfP2) *gfP2 { // Algorithm 10 https://eprint.iacr.org/2012/685.pdf // TODO b, b2, bq := &gfP2{}, &gfP2{}, &gfP2{} b.Exp(f, pMinus1Over4) b2.Mul(b, b) bq.Exp(b, p) return bq } func (e *gfP2) Div2(f *gfP2) *gfP2 { t := &gfP2{} t.x.Div2(&f.x) t.y.Div2(&f.y) e.Set(t) return e } // Select sets e to p1 if cond == 1, and to p2 if cond == 0. func (e *gfP2) Select(p1, p2 *gfP2, cond int) *gfP2 { e.x.Select(&p1.x, &p2.x, cond) e.y.Select(&p1.y, &p2.y, cond) return e }