package bn256 import ( "crypto/subtle" "math/big" ) // curvePoint implements the elliptic curve y²=x³+5. Points are kept in Jacobian // form and t=z² when valid. G₁ is the set of points of this curve on GF(p). type curvePoint struct { x, y, z, t gfP } var curveB = newGFp(5) var threeCurveB = newGFp(3 * 5) // curveGen is the generator of G₁. var curveGen = &curvePoint{ x: *fromBigInt(bigFromHex("93DE051D62BF718FF5ED0704487D01D6E1E4086909DC3280E8C4E4817C66DDDD")), y: *fromBigInt(bigFromHex("21FE8DDA4F21E607631065125C395BBC1C1C00CBFA6024350C464CD70A3EA616")), z: *one, t: *one, } func (c *curvePoint) String() string { c.MakeAffine() x, y := &gfP{}, &gfP{} montDecode(x, &c.x) montDecode(y, &c.y) return "(" + x.String() + ", " + y.String() + ")" } func (c *curvePoint) Set(a *curvePoint) { c.x.Set(&a.x) c.y.Set(&a.y) c.z.Set(&a.z) c.t.Set(&a.t) } func (c *curvePoint) polynomial(x *gfP) *gfP { x3 := &gfP{} gfpSqr(x3, x, 1) gfpMul(x3, x3, x) gfpAdd(x3, x3, curveB) return x3 } // IsOnCurve returns true if c is on the curve. func (c *curvePoint) IsOnCurve() bool { c.MakeAffine() if c.IsInfinity() { // TBC: This is not same as golang elliptic return true } y2 := &gfP{} gfpSqr(y2, &c.y, 1) x3 := c.polynomial(&c.x) return y2.Equal(x3) == 1 } func NewCurvePoint() *curvePoint { c := &curvePoint{} c.SetInfinity() return c } func NewCurveGenerator() *curvePoint { c := &curvePoint{} c.Set(curveGen) return c } func (c *curvePoint) SetInfinity() { c.x.Set(zero) c.y.Set(one) c.z.Set(zero) c.t.Set(zero) } func (c *curvePoint) IsInfinity() bool { return c.z.Equal(zero) == 1 } func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) { sum, t := &curvePoint{}, &curvePoint{} sum.SetInfinity() for i := scalar.BitLen(); i >= 0; i-- { t.Double(sum) if scalar.Bit(i) != 0 { sum.Add(t, a) } else { sum.Set(t) } } c.Set(sum) } // MakeAffine reverses the Jacobian transform. // the Jacobian coordinates are (x1, y1, z1) // where x = x1/z1² and y = y1/z1³. func (c *curvePoint) AffineFromJacobian() { if c.z.Equal(one) == 1 { return } else if c.z.Equal(zero) == 1 { c.x.Set(zero) c.y.Set(one) c.t.Set(zero) return } zInv := &gfP{} zInv.Invert(&c.z) t, zInv2 := &gfP{}, &gfP{} gfpMul(t, &c.y, zInv) // t = y/z gfpSqr(zInv2, zInv, 1) gfpMul(&c.x, &c.x, zInv2) // x = x / z^2 gfpMul(&c.y, t, zInv2) // y = y / z^3 c.z.Set(one) c.t.Set(one) } func (c *curvePoint) Neg(a *curvePoint) { c.x.Set(&a.x) gfpNeg(&c.y, &a.y) c.z.Set(&a.z) c.t.Set(zero) } // A curvePointTable holds the first 15 multiples of a point at offset -1, so [1]P // is at table[0], [15]P is at table[14], and [0]P is implicitly the identity // point. type curvePointTable [15]*curvePoint // Select selects the n-th multiple of the table base point into p. It works in // constant time by iterating over every entry of the table. n must be in [0, 15]. func (table *curvePointTable) Select(p *curvePoint, n uint8) { if n >= 16 { panic("sm9: internal error: curvePointTable called with out-of-bounds value") } p.SetInfinity() for i, f := range table { cond := subtle.ConstantTimeByteEq(uint8(i+1), n) curvePointMovCond(p, f, p, cond) } } // Equal compare e and other func (e *curvePoint) Equal(other *curvePoint) bool { return e.x.Equal(&other.x) == 1 && e.y.Equal(&other.y) == 1 && e.z.Equal(&other.z) == 1 && e.t.Equal(&other.t) == 1 } // Below methods are POC yet, the line add/double functions are still based on // Jacobian coordination. func (c *curvePoint) Add(p1, p2 *curvePoint) { // Complete addition formula for a = 0 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2. // Algorithm 7: Complete, projective point addition for prime order j-invariant 0 short Weierstrass curves. t0, t1, t2, t3, t4 := new(gfP), new(gfP), new(gfP), new(gfP), new(gfP) x3, y3, z3 := new(gfP), new(gfP), new(gfP) gfpMul(t0, &p1.x, &p2.x) // t0 := X1X2 gfpMul(t1, &p1.y, &p2.y) // t1 := Y1Y2 gfpMul(t2, &p1.z, &p2.z) // t2 := Z1Z2 gfpAdd(t3, &p1.x, &p1.y) // t3 := X1 + Y1 gfpAdd(t4, &p2.x, &p2.y) // t4 := X2 + Y2 gfpMul(t3, t3, t4) // t3 := t3 * t4 = (X1 + Y1) * (X2 + Y2) gfpAdd(t4, t0, t1) // t4 := t0 + t1 gfpSub(t3, t3, t4) // t3 := t3 - t4 = X1Y2 + X2Y1 gfpAdd(t4, &p1.y, &p1.z) // t4 := Y1 + Z1 gfpAdd(x3, &p2.y, &p2.z) // X3 := Y2 + Z2 gfpMul(t4, t4, x3) // t4 := t4 * X3 = (Y1 + Z1)(Y2 + Z2) gfpAdd(x3, t1, t2) // X3 := t1 + t2 gfpSub(t4, t4, x3) // t4 := t4 - X3 = Y1Z2 + Y2Z1 gfpAdd(x3, &p1.x, &p1.z) // X3 := X1 + Z1 gfpAdd(y3, &p2.x, &p2.z) // Y3 := X2 + Z2 gfpMul(x3, x3, y3) // X3 := X3 * Y3 gfpAdd(y3, t0, t2) // Y3 := t0 + t2 gfpSub(y3, x3, y3) // Y3 := X3 - Y3 = X1Z2 + X2Z1 gfpTriple(t0, t0) // t0 := t0 + t0 + t0 = 3X1X2 gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ1Z2 gfpAdd(z3, t1, t2) // Z3 := t1 + t2 = Y1Y2 + 3bZ1Z2 gfpSub(t1, t1, t2) // t1 := t1 - t2 = Y1Y2 - 3bZ1Z2 gfpMul(y3, threeCurveB, y3) // Y3 = 3b * Y3 = 3b(X1Z2 + X2Z1) gfpMul(x3, t4, y3) // X3 := t4 * Y3 = 3b(X1Z2 + X2Z1)(Y1Z2 + Y2Z1) gfpMul(t2, t3, t1) // t2 := t3 * t1 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2) gfpSub(x3, t2, x3) // X3 := t2 - X3 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2) - 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1) gfpMul(y3, y3, t0) // Y3 := Y3 * t0 = 9bX1X2(X1Z2 + X2Z1) gfpMul(t1, t1, z3) // t1 := t1 * Z3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2) gfpAdd(y3, t1, y3) // Y3 := t1 + Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2) + 9bX1X2(X1Z2 + X2Z1) gfpMul(t0, t0, t3) // t0 := t0 * t3 = 3X1X2(X1Y2 + X2Y1) gfpMul(z3, z3, t4) // Z3 := Z3 * t4 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) gfpAdd(z3, z3, t0) // Z3 := Z3 + t0 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1) c.x.Set(x3) c.y.Set(y3) c.z.Set(z3) } func (c *curvePoint) AddComplete(p1, p2 *curvePoint) { c.Add(p1, p2) } func (c *curvePoint) Double(p *curvePoint) { // Complete addition formula for a = 0 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2. // Algorithm 9: Exception-free point doubling for prime order j-invariant 0 short Weierstrass curves. t0, t1, t2 := new(gfP), new(gfP), new(gfP) x3, y3, z3 := new(gfP), new(gfP), new(gfP) gfpSqr(t0, &p.y, 1) // t0 := Y^2 gfpDouble(z3, t0) // Z3 := t0 + t0 gfpDouble(z3, z3) // Z3 := Z3 + Z3 gfpDouble(z3, z3) // Z3 := Z3 + Z3 gfpMul(t1, &p.y, &p.z) // t1 := YZ gfpSqr(t2, &p.z, 1) // t0 := Z^2 gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ^2 gfpMul(x3, t2, z3) // X3 := t2 * Z3 gfpAdd(y3, t0, t2) // Y3 := t0 + t2 gfpMul(z3, t1, z3) // Z3 := t1 * Z3 gfpTriple(t2, t2) // t2 := t2 + t2 + t2 gfpSub(t0, t0, t2) // t0 := t0 - t2 gfpMul(y3, t0, y3) // t0 := t0 * Y3 gfpAdd(y3, x3, y3) // Y3 := X3 + Y3 gfpMul(t1, &p.x, &p.y) // t1 := XY gfpMul(x3, t0, t1) // X3 := t0 * t1 gfpDouble(x3, x3) // X3 := X3 + X3 c.x.Set(x3) c.y.Set(y3) c.z.Set(z3) } func (c *curvePoint) DoubleComplete(p *curvePoint) { c.Double(p) } // MakeAffine reverses the Projective transform. // A = 1/Z1 // X3 = A*X1 // Y3 = A*Y1 // Z3 = 1 func (c *curvePoint) MakeAffine() { // TODO: do we need to change it to constant-time implementation? if c.z.Equal(one) == 1 { return } else if c.z.Equal(zero) == 1 { c.x.Set(zero) c.y.Set(one) c.t.Set(zero) return } zInv := &gfP{} zInv.Invert(&c.z) gfpMul(&c.x, &c.x, zInv) gfpMul(&c.y, &c.y, zInv) c.z.Set(one) c.t.Set(one) } func (c *curvePoint) AffineFromProjective() { c.MakeAffine() }