//go:build !purego #include "textflag.h" // This is a port of the s390x asm implementation. // to ppc64le. // Some changes were needed due to differences in // the Go opcodes and/or available instructions // between s390x and ppc64le. // 1. There were operand order differences in the // VSUBUQM, VSUBCUQ, and VSEL instructions. // 2. ppc64 does not have a multiply high and low // like s390x, so those were implemented using // macros to compute the equivalent values. // 3. The LVX, STVX instructions on ppc64 require // 16 byte alignment of the data. To avoid that // requirement, data is loaded using LXVD2X and // STXVD2X with VPERM to reorder bytes correctly. // I have identified some areas where I believe // changes would be needed to make this work for big // endian; however additional changes beyond what I // have noted are most likely needed to make it work. // - The string used with VPERM to swap the byte order // for loads and stores. // - The constants that are loaded from CPOOL. // // The following constants are defined in an order // that is correct for use with LXVD2X/STXVD2X // on little endian. DATA p256ordK0<>+0x00(SB)/4, $0x72350975 DATA p256ord<>+0x00(SB)/8, $0xfffffffeffffffff DATA p256ord<>+0x08(SB)/8, $0xffffffffffffffff DATA p256ord<>+0x10(SB)/8, $0x7203df6b21c6052b DATA p256ord<>+0x18(SB)/8, $0x53bbf40939d54123 DATA p256<>+0x00(SB)/8, $0xfffffffeffffffff // P256 DATA p256<>+0x08(SB)/8, $0xffffffffffffffff // P256 DATA p256<>+0x10(SB)/8, $0xffffffff00000000 // P256 DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256<>+0x20(SB)/8, $0x0000000000000000 // SEL 0 0 d1 d0 DATA p256<>+0x28(SB)/8, $0x18191a1b1c1d1e1f // SEL 0 0 d1 d0 DATA p256mul<>+0x00(SB)/8, $0xffffffff00000000 // P256 original DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256 DATA p256mul<>+0x10(SB)/8, $0xfffffffeffffffff // P256 original DATA p256mul<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0 DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0 DATA p256mul<>+0x30(SB)/8, $0x0405060708090a0b // SEL 0 0 d1 d0 DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0 DATA p256mul<>+0x40(SB)/8, $0x00000000ffffffff // (1*2^256)%P256 DATA p256mul<>+0x48(SB)/8, $0x0000000000000001 // (1*2^256)%P256 DATA p256mul<>+0x50(SB)/8, $0x0000000100000000 // (1*2^256)%P256 DATA p256mul<>+0x58(SB)/8, $0x0000000000000000 // (1*2^256)%P256 // External declarations for constants GLOBL p256ordK0<>(SB), 8, $4 GLOBL p256ord<>(SB), 8, $32 GLOBL p256<>(SB), 8, $48 GLOBL p256mul<>(SB), 8, $96 // The following macros are used to implement the ppc64le // equivalent function from the corresponding s390x // instruction for vector multiply high, low, and add, // since there aren't exact equivalent instructions. // The corresponding s390x instructions appear in the // comments. // Implementation for big endian would have to be // investigated, I think it would be different. // // // Vector multiply word // // VMLF x0, x1, out_low // VMLHF x0, x1, out_hi #define VMULT(x1, x2, out_low, out_hi) \ VMULEUW x1, x2, TMP1; \ VMULOUW x1, x2, TMP2; \ VMRGEW TMP1, TMP2, out_hi; \ VMRGOW TMP1, TMP2, out_low // // Vector multiply add word // // VMALF x0, x1, y, out_low // VMALHF x0, x1, y, out_hi #define VMULT_ADD(x1, x2, y, one, out_low, out_hi) \ VMULEUW y, one, TMP2; \ VMULOUW y, one, TMP1; \ VMULEUW x1, x2, out_low; \ VMULOUW x1, x2, out_hi; \ VADDUDM TMP2, out_low, TMP2; \ VADDUDM TMP1, out_hi, TMP1; \ VMRGOW TMP2, TMP1, out_low; \ VMRGEW TMP2, TMP1, out_hi #define res_ptr R3 #define a_ptr R4 #undef res_ptr #undef a_ptr #define P1ptr R3 #define CPOOL R7 #define Y1L V0 #define Y1H V1 #define T1L V2 #define T1H V3 #define PL V30 #define PH V31 #define CAR1 V6 // func p256NegCond(val *p256Point, cond int) TEXT ·p256NegCond(SB), NOSPLIT, $0-16 MOVD val+0(FP), P1ptr MOVD $16, R16 MOVD cond+8(FP), R6 CMP $0, R6 BC 12, 2, LR // just return if cond == 0 MOVD $p256mul<>+0x00(SB), CPOOL LXVD2X (P1ptr)(R0), Y1L LXVD2X (P1ptr)(R16), Y1H XXPERMDI Y1H, Y1H, $2, Y1H XXPERMDI Y1L, Y1L, $2, Y1L LXVD2X (CPOOL)(R0), PL LXVD2X (CPOOL)(R16), PH VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry VSUBUQM PL, Y1L, T1L // subtract part2 giving result VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2 XXPERMDI T1H, T1H, $2, T1H XXPERMDI T1L, T1L, $2, T1L STXVD2X T1L, (R0+P1ptr) STXVD2X T1H, (R16+P1ptr) RET #undef P1ptr #undef CPOOL #undef Y1L #undef Y1H #undef T1L #undef T1H #undef PL #undef PH #undef CAR1 #define P3ptr R3 #define P1ptr R4 #define P2ptr R5 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define SEL V12 #define ZER V13 // This function uses LXVD2X and STXVD2X to avoid the // data alignment requirement for LVX, STVX. Since // this code is just moving bytes and not doing arithmetic, // order of the bytes doesn't matter. // // func p256MovCond(res, a, b *p256Point, cond int) TEXT ·p256MovCond(SB), NOSPLIT, $0-32 MOVD res+0(FP), P3ptr MOVD a+8(FP), P1ptr MOVD b+16(FP), P2ptr MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $56, R21 MOVD $64, R19 MOVD $80, R20 // cond is R1 + 24 (cond offset) + 32 LXVDSX (R1)(R21), SEL VSPLTISB $0, ZER // SEL controls whether to store a or b VCMPEQUD SEL, ZER, SEL LXVD2X (P1ptr+R0), X1H LXVD2X (P1ptr+R16), X1L LXVD2X (P1ptr+R17), Y1H LXVD2X (P1ptr+R18), Y1L LXVD2X (P1ptr+R19), Z1H LXVD2X (P1ptr+R20), Z1L LXVD2X (P2ptr+R0), X2H LXVD2X (P2ptr+R16), X2L LXVD2X (P2ptr+R17), Y2H LXVD2X (P2ptr+R18), Y2L LXVD2X (P2ptr+R19), Z2H LXVD2X (P2ptr+R20), Z2L VSEL X1H, X2H, SEL, X1H VSEL X1L, X2L, SEL, X1L VSEL Y1H, Y2H, SEL, Y1H VSEL Y1L, Y2L, SEL, Y1L VSEL Z1H, Z2H, SEL, Z1H VSEL Z1L, Z2L, SEL, Z1L STXVD2X X1H, (P3ptr+R0) STXVD2X X1L, (P3ptr+R16) STXVD2X Y1H, (P3ptr+R17) STXVD2X Y1L, (P3ptr+R18) STXVD2X Z1H, (P3ptr+R19) STXVD2X Z1L, (P3ptr+R20) RET #undef P3ptr #undef P1ptr #undef P2ptr #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef SEL #undef ZER #define P3ptr R3 #define P1ptr R4 #define COUNT R5 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 // func p256Select(point *p256Point, table *p256Table, idx int, limit int) TEXT ·p256Select(SB), NOSPLIT, $0-24 MOVD res+0(FP), P3ptr MOVD table+8(FP), P1ptr MOVD limit+24(FP), COUNT MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $80, R20 LXVDSX (R1)(R18), SEL1 // VLREPG idx+32(FP), SEL1 VSPLTB $7, SEL1, IDX // splat byte VSPLTISB $1, ONE // VREPIB $1, ONE VSPLTISB $1, SEL2 // VREPIB $1, SEL2 MOVD COUNT, CTR // set up ctr VSPLTISB $0, X1H // VZERO X1H VSPLTISB $0, X1L // VZERO X1L VSPLTISB $0, Y1H // VZERO Y1H VSPLTISB $0, Y1L // VZERO Y1L VSPLTISB $0, Z1H // VZERO Z1H VSPLTISB $0, Z1L // VZERO Z1L loop_select: // LVXD2X is used here since data alignment doesn't // matter. LXVD2X (P1ptr+R0), X2H LXVD2X (P1ptr+R16), X2L LXVD2X (P1ptr+R17), Y2H LXVD2X (P1ptr+R18), Y2L LXVD2X (P1ptr+R19), Z2H LXVD2X (P1ptr+R20), Z2L VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK // This will result in SEL1 being all 0s or 1s, meaning // the result is either X1L or X2L, no individual byte // selection. VSEL X1L, X2L, SEL1, X1L VSEL X1H, X2H, SEL1, X1H VSEL Y1L, Y2L, SEL1, Y1L VSEL Y1H, Y2H, SEL1, Y1H VSEL Z1L, Z2L, SEL1, Z1L VSEL Z1H, Z2H, SEL1, Z1H // Add 1 to all bytes in SEL2 VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK ADD $96, P1ptr BDNZ loop_select // STXVD2X is used here so that alignment doesn't // need to be verified. Since values were loaded // using LXVD2X this is OK. STXVD2X X1H, (P3ptr+R0) STXVD2X X1L, (P3ptr+R16) STXVD2X Y1H, (P3ptr+R17) STXVD2X Y1L, (P3ptr+R18) STXVD2X Z1H, (P3ptr+R19) STXVD2X Z1L, (P3ptr+R20) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 // The following functions all reverse the byte order. //func p256BigToLittle(res *p256Element, in *[32]byte) TEXT ·p256BigToLittle(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) //func p256LittleToBig(res *[32]byte, in *p256Element) TEXT ·p256LittleToBig(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) //func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte) TEXT ·p256OrdBigToLittle(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) //func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement) TEXT ·p256OrdLittleToBig(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) TEXT p256InternalEndianSwap<>(SB), NOSPLIT, $0-0 // Index registers needed for BR movs MOVD $8, R9 MOVD $16, R10 MOVD $24, R14 MOVDBR (R0)(R4), R5 MOVDBR (R9)(R4), R6 MOVDBR (R10)(R4), R7 MOVDBR (R14)(R4), R8 MOVD R8, 0(R3) MOVD R7, 8(R3) MOVD R6, 16(R3) MOVD R5, 24(R3) RET #define P3ptr R3 #define P1ptr R4 #define COUNT R5 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 // func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int) TEXT ·p256SelectAffine(SB), NOSPLIT, $0-24 MOVD res+0(FP), P3ptr MOVD table+8(FP), P1ptr MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 LXVDSX (R1)(R18), SEL1 VSPLTB $7, SEL1, IDX // splat byte VSPLTISB $1, ONE // Vector with byte 1s VSPLTISB $1, SEL2 // Vector with byte 1s MOVD $32, COUNT MOVD COUNT, CTR // loop count VSPLTISB $0, X1H // VZERO X1H VSPLTISB $0, X1L // VZERO X1L VSPLTISB $0, Y1H // VZERO Y1H VSPLTISB $0, Y1L // VZERO Y1L loop_select: LXVD2X (P1ptr+R0), X2H LXVD2X (P1ptr+R16), X2L LXVD2X (P1ptr+R17), Y2H LXVD2X (P1ptr+R18), Y2L VCMPEQUD SEL2, IDX, SEL1 // Compare against idx VSEL X1L, X2L, SEL1, X1L // Select if idx matched VSEL X1H, X2H, SEL1, X1H VSEL Y1L, Y2L, SEL1, Y1L VSEL Y1H, Y2H, SEL1, Y1H VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1 ADD $64, P1ptr // Next chunk BDNZ loop_select STXVD2X X1H, (P3ptr+R0) STXVD2X X1L, (P3ptr+R16) STXVD2X Y1H, (P3ptr+R17) STXVD2X Y1L, (P3ptr+R18) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 #define res_ptr R3 #define x_ptr R4 #define CPOOL R7 #define T0 V0 #define T1 V1 #define T2 V2 #define TT0 V3 #define TT1 V4 #define ZER V6 #define SEL1 V7 #define SEL2 V8 #define CAR1 V9 #define CAR2 V10 #define RED1 V11 #define RED2 V12 #define PL V13 #define PH V14 // func p256FromMont(res, in *p256Element) TEXT ·p256FromMont(SB), NOSPLIT, $0-16 MOVD res+0(FP), res_ptr MOVD in+8(FP), x_ptr MOVD $16, R16 MOVD $32, R17 MOVD $p256<>+0x00(SB), CPOOL VSPLTISB $0, T2 // VZERO T2 VSPLTISB $0, ZER // VZERO ZER // Constants are defined so that the LXVD2X is correct LXVD2X (CPOOL+R0), PH LXVD2X (CPOOL+R16), PL // VPERM byte selections LXVD2X (CPOOL+R17), SEL1 LXVD2X (R16)(x_ptr), T1 LXVD2X (R0)(x_ptr), T0 // Put in true little endian order XXPERMDI T0, T0, $2, T0 XXPERMDI T1, T1, $2, T1 // First round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0 VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1 VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1 VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // Second round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0 VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1 VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1 VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // Third round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0 VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1 VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1 VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // Last round VPERM ZER, T0, SEL1, RED1 // 0 0 d1 d0 VSLDOI $4, RED1, ZER, TT0 // 0 d1 d0 0 VSLDOI $4, TT0, ZER, RED2 // d1 d0 0 0 VSUBCUQ RED1, TT0, CAR1 // VSCBIQ TT0, RED1, CAR1 VSUBUQM RED1, TT0, RED1 // VSQ TT0, RED1, RED1 VSUBEUQM RED2, TT0, CAR1, RED2 // VSBIQ RED2, TT0, CAR1, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // --------------------------------------------------- VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1 VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0 VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2 VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1 VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2 VSEL TT0, T0, T2, T0 VSEL TT1, T1, T2, T1 // Reorder the bytes so STXVD2X can be used. // TT0, TT1 used for VPERM result in case // the caller expects T0, T1 to be good. XXPERMDI T0, T0, $2, TT0 XXPERMDI T1, T1, $2, TT1 STXVD2X TT0, (R0)(res_ptr) STXVD2X TT1, (R16)(res_ptr) RET #undef res_ptr #undef x_ptr #undef CPOOL #undef T0 #undef T1 #undef T2 #undef TT0 #undef TT1 #undef ZER #undef SEL1 #undef SEL2 #undef CAR1 #undef CAR2 #undef RED1 #undef RED2 #undef PL #undef PH //func p256OrdReduce(s *p256OrdElement) #define res_ptr R3 #define CPOOL R4 #define T0 V0 #define T1 V1 #define T2 V2 #define TT0 V3 #define TT1 V4 #define ZER V6 #define CAR1 V7 #define CAR2 V8 #define PL V9 #define PH V10 TEXT ·p256OrdReduce(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr MOVD $16, R16 VSPLTISB $0, T2 // VZERO T2 VSPLTISB $0, ZER // VZERO ZER MOVD $p256ord<>+0x00(SB), CPOOL LXVD2X (CPOOL+R0), PH LXVD2X (CPOOL+R16), PL LXVD2X (R16)(res_ptr), T1 LXVD2X (R0)(res_ptr), T0 // Put in true little endian order XXPERMDI T0, T0, $2, T0 XXPERMDI T1, T1, $2, T1 VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1 VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0 VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2 VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1 VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2 VSEL TT0, T0, T2, T0 VSEL TT1, T1, T2, T1 // Reorder the bytes so STXVD2X can be used. // TT0, TT1 used for VPERM result in case // the caller expects T0, T1 to be good. XXPERMDI T0, T0, $2, TT0 XXPERMDI T1, T1, $2, TT1 STXVD2X TT0, (R0)(res_ptr) STXVD2X TT1, (R16)(res_ptr) RET #undef res_ptr #undef CPOOL #undef T0 #undef T1 #undef T2 #undef TT0 #undef TT1 #undef ZER #undef CAR1 #undef CAR2 #undef PL #undef PH