package sm2 import ( "crypto" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/elliptic" "crypto/sha512" "encoding/binary" "errors" "fmt" "io" "math/big" "strings" "sync" "github.com/emmansun/gmsm/sm3" "golang.org/x/crypto/cryptobyte" "golang.org/x/crypto/cryptobyte/asn1" ) const ( uncompressed byte = 0x04 compressed02 byte = 0x02 compressed03 byte = 0x03 mixed06 byte = 0x06 mixed07 byte = 0x07 ) // A invertible implements fast inverse mod Curve.Params().N type invertible interface { // Inverse returns the inverse of k in GF(P) Inverse(k *big.Int) *big.Int } // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) type combinedMult interface { CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) } // PrivateKey represents an ECDSA SM2 private key. type PrivateKey struct { ecdsa.PrivateKey } type pointMarshalMode byte const ( //MarshalUncompressed uncompressed mashal mode MarshalUncompressed pointMarshalMode = iota //MarshalCompressed compressed mashal mode MarshalCompressed //MarshalMixed mixed mashal mode MarshalMixed ) // EncrypterOpts encryption options type EncrypterOpts struct { PointMarshalMode pointMarshalMode } func (mode pointMarshalMode) mashal(curve elliptic.Curve, x, y *big.Int) []byte { switch mode { case MarshalCompressed: return point2CompressedBytes(curve, x, y) case MarshalMixed: return point2MixedBytes(curve, x, y) default: return point2UncompressedBytes(curve, x, y) } } var defaultEncrypterOpts = EncrypterOpts{MarshalUncompressed} // directSigning is a standard Hash value that signals that no pre-hashing // should be performed. var directSigning crypto.Hash = 0 // Signer SM2 special signer type Signer interface { SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) } type SM2SignerOption struct { UID []byte ForceGMSign bool } // NewSM2SignerOption create a SM2 specific signer option // forceGMSign - if use GM specific sign logic, if yes, should pass raw message to sign // uid - if forceGMSign is true, then you can pass uid, if no uid is provided, system will use default one func NewSM2SignerOption(forceGMSign bool, uid []byte) *SM2SignerOption { opt := &SM2SignerOption{ UID: uid, ForceGMSign: forceGMSign, } if forceGMSign && len(uid) == 0 { opt.UID = defaultUID } return opt } func (*SM2SignerOption) HashFunc() crypto.Hash { return directSigning } // FromECPrivateKey convert an ecdsa private key to SM2 private key func (priv *PrivateKey) FromECPrivateKey(key *ecdsa.PrivateKey) (*PrivateKey, error) { if key.Curve != P256() { return nil, errors.New("It's NOT a sm2 curve private key") } priv.PrivateKey = *key return priv, nil } // Sign signs digest with priv, reading randomness from rand. The opts argument // is not currently used but, in keeping with the crypto.Signer interface, // should be the hash function used to digest the message. // // This method implements crypto.Signer, which is an interface to support keys // where the private part is kept in, for example, a hardware module. Common // uses should use the Sign function in this package directly. func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { var r, s *big.Int var err error if sm2Opts, ok := opts.(*SM2SignerOption); ok && sm2Opts.ForceGMSign { r, s, err = SignWithSM2(rand, &priv.PrivateKey, sm2Opts.UID, digest) } else { r, s, err = Sign(rand, &priv.PrivateKey, digest) } if err != nil { return nil, err } var b cryptobyte.Builder b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { b.AddASN1BigInt(r) b.AddASN1BigInt(s) }) return b.Bytes() } // SignWithSM2 signs uid, msg with SignWithSM2 method. func (priv *PrivateKey) SignWithSM2(rand io.Reader, uid, msg []byte) ([]byte, error) { return priv.Sign(rand, msg, NewSM2SignerOption(true, uid)) } // Decrypt decrypts msg. The opts argument should be appropriate for // the primitive used. func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { return Decrypt(priv, msg) } var ( one = new(big.Int).SetInt64(1) initonce sync.Once ) // P256 init and return the singleton func P256() elliptic.Curve { initonce.Do(initP256) return p256 } ///////////////// below code ship from golan crypto/ecdsa //////////////////// // randFieldElement returns a random element of the field underlying the given // curve using the procedure given in [NSA] A.2.1. func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { params := c.Params() b := make([]byte, params.BitSize/8+8) _, err = io.ReadFull(rand, b) if err != nil { return } k = new(big.Int).SetBytes(b) n := new(big.Int).Sub(params.N, one) k.Mod(k, n) k.Add(k, one) return } /////////////////////////////////////////////////////////////////////////////////// const maxRetryLimit = 100 func kdf(z []byte, len int) ([]byte, bool) { limit := (len + sm3.Size - 1) >> sm3.SizeBitSize md := sm3.New() var countBytes [4]byte var ct uint32 = 1 k := make([]byte, len+sm3.Size-1) for i := 0; i < limit; i++ { binary.BigEndian.PutUint32(countBytes[:], ct) md.Write(z) md.Write(countBytes[:]) copy(k[i*sm3.Size:], md.Sum(nil)) ct++ md.Reset() } for i := 0; i < len; i++ { if k[i] != 0 { return k[:len], true } } return k, false } func calculateC3(curve elliptic.Curve, x2, y2 *big.Int, msg []byte) []byte { md := sm3.New() md.Write(toBytes(curve, x2)) md.Write(msg) md.Write(toBytes(curve, y2)) return md.Sum(nil) } // Encrypt sm2 encrypt implementation func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) { curve := pub.Curve msgLen := len(msg) if msgLen == 0 { return nil, nil } if opts == nil { opts = &defaultEncrypterOpts } //A3, requirement is to check if h*P is infinite point, h is 1 if pub.X.Sign() == 0 && pub.Y.Sign() == 0 { return nil, errors.New("SM2: invalid public key") } for { //A1, generate random k k, err := randFieldElement(curve, random) if err != nil { return nil, err } //A2, calculate C1 = k * G x1, y1 := curve.ScalarBaseMult(k.Bytes()) c1 := opts.PointMarshalMode.mashal(curve, x1, y1) //A4, calculate k * P (point of Public Key) x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes()) //A5, calculate t=KDF(x2||y2, klen) var kdfCount int = 0 t, success := kdf(append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen) if !success { kdfCount++ if kdfCount > maxRetryLimit { return nil, fmt.Errorf("SM2: A5, failed to calculate valid t, tried %v times", kdfCount) } continue } //A6, C2 = M + t; c2 := make([]byte, msgLen) for i := 0; i < msgLen; i++ { c2[i] = msg[i] ^ t[i] } //A7, C3 = hash(x2||M||y2) c3 := calculateC3(curve, x2, y2, msg) // c1 || c3 || c2 return append(append(c1, c3...), c2...), nil } } // GenerateKey generates a public and private key pair. func GenerateKey(rand io.Reader) (*PrivateKey, error) { c := P256() k, err := randFieldElement(c, rand) if err != nil { return nil, err } priv := new(PrivateKey) priv.PublicKey.Curve = c priv.D = k priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) return priv, nil } // Decrypt sm2 decrypt implementation func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) { ciphertextLen := len(ciphertext) if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size { return nil, errors.New("SM2: invalid ciphertext length") } curve := priv.Curve // B1, get C1, and check C1 x1, y1, c3Start, err := bytes2Point(curve, ciphertext) if err != nil { return nil, err } //B2 is ignored //B3, calculate x2, y2 x2, y2 := curve.ScalarMult(x1, y1, priv.D.Bytes()) //B4, calculate t=KDF(x2||y2, klen) c2 := ciphertext[c3Start+sm3.Size:] msgLen := len(c2) t, success := kdf(append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen) if !success { return nil, errors.New("SM2: invalid cipher text") } //B5, calculate msg = c2 ^ t msg := make([]byte, msgLen) for i := 0; i < msgLen; i++ { msg[i] = c2[i] ^ t[i] } //B6, calculate hash and compare it c3 := ciphertext[c3Start : c3Start+sm3.Size] u := calculateC3(curve, x2, y2, msg) for i := 0; i < sm3.Size; i++ { if c3[i] != u[i] { return nil, errors.New("SM2: invalid hash value") } } return msg, nil } // hashToInt converts a hash value to an integer. There is some disagreement // about how this is done. [NSA] suggests that this is done in the obvious // manner, but [SECG] truncates the hash to the bit-length of the curve order // first. We follow [SECG] because that's what OpenSSL does. Additionally, // OpenSSL right shifts excess bits from the number if the hash is too large // and we mirror that too. func hashToInt(hash []byte, c elliptic.Curve) *big.Int { orderBits := c.Params().N.BitLen() orderBytes := (orderBits + 7) / 8 if len(hash) > orderBytes { hash = hash[:orderBytes] } ret := new(big.Int).SetBytes(hash) excess := len(hash)*8 - orderBits if excess > 0 { ret.Rsh(ret, uint(excess)) } return ret } const ( aesIV = "IV for ECDSA CTR" ) var errZeroParam = errors.New("zero parameter") // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. // This has better constant-time properties than Euclid's method (implemented // in math/big.Int.ModInverse) although math/big itself isn't strictly // constant-time so it's not perfect. func fermatInverse(k, N *big.Int) *big.Int { two := big.NewInt(2) nMinus2 := new(big.Int).Sub(N, two) return new(big.Int).Exp(k, nMinus2, N) } // Sign signs a hash (which should be the result of hashing a larger message) // using the private key, priv. If the hash is longer than the bit-length of the // private key's curve order, the hash will be truncated to that length. It // returns the signature as a pair of integers. The security of the private key // depends on the entropy of rand. func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) { if !strings.EqualFold(priv.Params().Name, P256().Params().Name) { return ecdsa.Sign(rand, priv, hash) } maybeReadByte(rand) // Get min(log2(q) / 2, 256) bits of entropy from rand. entropylen := (priv.Curve.Params().BitSize + 7) / 16 if entropylen > 32 { entropylen = 32 } entropy := make([]byte, entropylen) _, err = io.ReadFull(rand, entropy) if err != nil { return } // Initialize an SHA-512 hash context; digest ... md := sha512.New() md.Write(priv.D.Bytes()) // the private key, md.Write(entropy) // the entropy, md.Write(hash) // and the input hash; key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), // which is an indifferentiable MAC. // Create an AES-CTR instance to use as a CSPRNG. block, err := aes.NewCipher(key) if err != nil { return nil, nil, err } // Create a CSPRNG that xors a stream of zeros with // the output of the AES-CTR instance. csprng := cipher.StreamReader{ R: zeroReader, S: cipher.NewCTR(block, []byte(aesIV)), } // See [NSA] 3.4.1 c := priv.PublicKey.Curve N := c.Params().N if N.Sign() == 0 { return nil, nil, errZeroParam } var k *big.Int e := hashToInt(hash, c) for { for { k, err = randFieldElement(c, csprng) if err != nil { r = nil return } r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G r.Add(r, e) // r = x + e r.Mod(r, N) // r = (x + e) mod N if r.Sign() != 0 { t := new(big.Int).Add(r, k) if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok break } } } s = new(big.Int).Mul(priv.D, r) s = new(big.Int).Sub(k, s) dp1 := new(big.Int).Add(priv.D, one) var dp1Inv *big.Int if in, ok := priv.Curve.(invertible); ok { dp1Inv = in.Inverse(dp1) } else { dp1Inv = fermatInverse(dp1, N) // N != 0 } s.Mul(s, dp1Inv) s.Mod(s, N) // N != 0 if s.Sign() != 0 { break } } return } var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38} // calculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA) func calculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) { uidLen := len(uid) if uidLen >= 0x2000 { return nil, errors.New("the uid is too long") } entla := uint16(uidLen) << 3 md := sm3.New() md.Write([]byte{byte(entla >> 8), byte(entla)}) if uidLen > 0 { md.Write(uid) } a := new(big.Int).Sub(pub.Params().P, big.NewInt(3)) md.Write(toBytes(pub.Curve, a)) md.Write(toBytes(pub.Curve, pub.Params().B)) md.Write(toBytes(pub.Curve, pub.Params().Gx)) md.Write(toBytes(pub.Curve, pub.Params().Gy)) md.Write(toBytes(pub.Curve, pub.X)) md.Write(toBytes(pub.Curve, pub.Y)) return md.Sum(nil), nil } // SignWithSM2 follow sm2 dsa standards for hash part func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) { if len(uid) == 0 { uid = defaultUID } za, err := calculateZA(&priv.PublicKey, uid) if err != nil { return nil, nil, err } md := sm3.New() md.Write(za) md.Write(msg) return Sign(rand, priv, md.Sum(nil)) } // SignASN1 signs a hash (which should be the result of hashing a larger message) // using the private key, priv. If the hash is longer than the bit-length of the // private key's curve order, the hash will be truncated to that length. It // returns the ASN.1 encoded signature. The security of the private key // depends on the entropy of rand. func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte, opts crypto.SignerOpts) ([]byte, error) { return priv.Sign(rand, hash, opts) } // Verify verifies the signature in r, s of hash using the public key, pub. Its // return value records whether the signature is valid. func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool { if strings.EqualFold(pub.Params().Name, P256().Params().Name) { c := pub.Curve N := c.Params().N if r.Sign() <= 0 || s.Sign() <= 0 { return false } if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { return false } e := hashToInt(hash, c) t := new(big.Int).Add(r, s) t.Mod(t, N) if t.Sign() == 0 { return false } var x *big.Int if opt, ok := c.(combinedMult); ok { x, _ = opt.CombinedMult(pub.X, pub.Y, s.Bytes(), t.Bytes()) } else { x1, y1 := c.ScalarBaseMult(s.Bytes()) x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes()) x, _ = c.Add(x1, y1, x2, y2) } x.Add(x, e) x.Mod(x, N) return x.Cmp(r) == 0 } return ecdsa.Verify(pub, hash, r, s) } // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the // public key, pub. Its return value records whether the signature is valid. func VerifyASN1(pub *ecdsa.PublicKey, hash, sig []byte) bool { var ( r, s = &big.Int{}, &big.Int{} inner cryptobyte.String ) input := cryptobyte.String(sig) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(r) || !inner.ReadASN1Integer(s) || !inner.Empty() { return false } return Verify(pub, hash, r, s) } // VerifyWithSM2 verifies the signature in r, s of hash using the public key, pub. Its // return value records whether the signature is valid. func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool { if len(uid) == 0 { uid = defaultUID } za, err := calculateZA(pub, uid) if err != nil { return false } md := sm3.New() md.Write(za) md.Write(msg) return Verify(pub, md.Sum(nil), r, s) } // VerifyASN1WithSM2 verifies the signature in r, s of hash using the public key, pub. Its // return value records whether the signature is valid. func VerifyASN1WithSM2(pub *ecdsa.PublicKey, uid, msg, sig []byte) bool { var ( r, s = &big.Int{}, &big.Int{} inner cryptobyte.String ) input := cryptobyte.String(sig) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(r) || !inner.ReadASN1Integer(s) || !inner.Empty() { return false } return VerifyWithSM2(pub, uid, msg, r, s) } type zr struct { io.Reader } // Read replaces the contents of dst with zeros. func (z *zr) Read(dst []byte) (n int, err error) { for i := range dst { dst[i] = 0 } return len(dst), nil } var zeroReader = &zr{} // IsSM2PublicKey check if given public key is a SM2 public key or not func IsSM2PublicKey(publicKey interface{}) bool { pub, ok := publicKey.(*ecdsa.PublicKey) return ok && strings.EqualFold(P256().Params().Name, pub.Curve.Params().Name) }