// Copyright 2024 Sun Yimin. All rights reserved. // Use of this source code is governed by a MIT-style // license that can be found in the LICENSE file. package cipher import ( "crypto/cipher" "crypto/subtle" "errors" "github.com/emmansun/gmsm/internal/alias" "github.com/emmansun/gmsm/internal/byteorder" ) // A LengthPreservingMode represents a block cipher running in a length preserving mode (HCTR, // HCTR2 etc). type LengthPreservingMode interface { // EncryptBytes encrypts a number of plaintext bytes. The length of // src must be NOT smaller than block size. Dst and src must overlap // entirely or not at all. // // If len(dst) < len(src), EncryptBytes should panic. It is acceptable // to pass a dst bigger than src, and in that case, Encrypt will // only update dst[:len(src)] and will not touch the rest of dst. // // Multiple calls to EncryptBytes behave NOT same as if the concatenation of // the src buffers was passed in a single run. EncryptBytes(dst, src []byte) // DecryptBytes decrypts a number of ciphertext bytes. The length of // src must be NOT smaller than block size. Dst and src must overlap // entirely or not at all. // // If len(dst) < len(src), DecryptBytes should panic. It is acceptable // to pass a dst bigger than src, and in that case, DecryptBytes will // only update dst[:len(src)] and will not touch the rest of dst. // // Multiple calls to DecryptBytes behave NOT same as if the concatenation of // the src buffers was passed in a single run. DecryptBytes(dst, src []byte) // BlockSize returns the mode's block size. BlockSize() int } // hctr represents a Variable-Input-Length enciphering mode with a specific block cipher, // and specific tweak and a hash key. See // https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288 // GB/T 17964-2021 第11章 带泛杂凑函数的计数器工作模式 type hctr struct { cipher cipher.Block tweak [blockSize]byte // productTable contains the first sixteen powers of the hash key. // However, they are in bit reversed order. productTable [16]ghashFieldElement } func (h *hctr) BlockSize() int { return blockSize } // NewHCTR returns a [LengthPreservingMode] which encrypts/decrypts using the given [Block] // in HCTR mode. The length of tweak and hash key must be the same as the [Block]'s block size. func NewHCTR(cipher cipher.Block, tweak, hkey []byte) (LengthPreservingMode, error) { if len(tweak) != blockSize || len(hkey) != blockSize { return nil, errors.New("cipher: invalid tweak and/or hash key length") } c := &hctr{} c.cipher = cipher copy(c.tweak[:], tweak) // We precompute 16 multiples of |key|. However, when we do lookups // into this table we'll be using bits from a field element and // therefore the bits will be in the reverse order. So normally one // would expect, say, 4*key to be in index 4 of the table but due to // this bit ordering it will actually be in index 0010 (base 2) = 2. x := ghashFieldElement{ byteorder.BEUint64(hkey[:8]), byteorder.BEUint64(hkey[8:blockSize]), } c.productTable[reverseBits(1)] = x for i := 2; i < 16; i += 2 { c.productTable[reverseBits(i)] = ghashDouble(&c.productTable[reverseBits(i/2)]) c.productTable[reverseBits(i+1)] = ghashAdd(&c.productTable[reverseBits(i)], &x) } return c, nil } // mul sets y to y*H, where H is the GCM key, fixed during NewHCTR. func (h *hctr) mul(y *ghashFieldElement) { ghashMul(&h.productTable, y) } func (h *hctr) updateBlock(block []byte, y *ghashFieldElement) { y.low ^= byteorder.BEUint64(block) y.high ^= byteorder.BEUint64(block[8:]) h.mul(y) } // Universal Hash Function. // Chapter 3.3 in https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288. func (h *hctr) uhash(m []byte, out *[blockSize]byte) { var y ghashFieldElement msg := m // update blocks for len(msg) >= blockSize { h.updateBlock(msg, &y) msg = msg[blockSize:] } // update partial block & tweak if len(msg) > 0 { var partialBlock [blockSize]byte copy(partialBlock[:], msg) copy(partialBlock[len(msg):], h.tweak[:]) h.updateBlock(partialBlock[:], &y) copy(partialBlock[:], h.tweak[len(msg):]) for i := len(msg); i < blockSize; i++ { partialBlock[i] = 0 } h.updateBlock(partialBlock[:], &y) } else { h.updateBlock(h.tweak[:], &y) } // update bit string length (|M|)₂ y.high ^= uint64(len(m)+blockSize) * 8 h.mul(&y) // output result byteorder.BEPutUint64(out[:], y.low) byteorder.BEPutUint64(out[8:], y.high) } func (h *hctr) EncryptBytes(ciphertext, plaintext []byte) { if len(ciphertext) < len(plaintext) { panic("cipher: ciphertext is smaller than plaintext") } if len(plaintext) < blockSize { panic("cipher: plaintext length is smaller than the block size") } if alias.InexactOverlap(ciphertext[:len(plaintext)], plaintext) { panic("cipher: invalid buffer overlap") } var z1, z2 [blockSize]byte // a) z1 generation h.uhash(plaintext[blockSize:], &z1) subtle.XORBytes(z1[:], z1[:], plaintext[:blockSize]) // b) z2 generation h.cipher.Encrypt(z2[:], z1[:]) // c) CTR subtle.XORBytes(z1[:], z1[:], z2[:]) h.ctr(ciphertext[blockSize:], plaintext[blockSize:], &z1) // d) first ciphertext block generation h.uhash(ciphertext[blockSize:], &z1) subtle.XORBytes(ciphertext, z2[:], z1[:]) } func (h *hctr) DecryptBytes(plaintext, ciphertext []byte) { if len(plaintext) < len(ciphertext) { panic("cipher: plaintext is smaller than cihpertext") } if len(ciphertext) < blockSize { panic("cipher: ciphertext length is smaller than the block size") } if alias.InexactOverlap(plaintext[:len(ciphertext)], ciphertext) { panic("cipher: invalid buffer overlap") } var z1, z2 [blockSize]byte // a) z2 generation h.uhash(ciphertext[blockSize:], &z2) subtle.XORBytes(z2[:], z2[:], ciphertext[:blockSize]) // b) z1 generation h.cipher.Decrypt(z1[:], z2[:]) // c) CTR subtle.XORBytes(z2[:], z2[:], z1[:]) h.ctr(plaintext[blockSize:], ciphertext[blockSize:], &z2) // d) first plaintext block generation h.uhash(plaintext[blockSize:], &z2) subtle.XORBytes(plaintext, z2[:], z1[:]) } func (h *hctr) ctr(dst, src []byte, baseCtr *[blockSize]byte) { ctr := make([]byte, blockSize) num := make([]byte, blockSize) i := uint64(1) if concCipher, ok := h.cipher.(concurrentBlocks); ok { batchSize := concCipher.Concurrency() * blockSize if len(src) >= batchSize { var ctrs = make([]byte, batchSize) for len(src) >= batchSize { for j := 0; j < concCipher.Concurrency(); j++ { // (i)₂ byteorder.BEPutUint64(num[blockSize-8:], i) subtle.XORBytes(ctrs[j*blockSize:], baseCtr[:], num) i++ } concCipher.EncryptBlocks(ctrs, ctrs) subtle.XORBytes(dst, src, ctrs) src = src[batchSize:] dst = dst[batchSize:] } } } for len(src) > 0 { // (i)₂ byteorder.BEPutUint64(num[blockSize-8:], i) subtle.XORBytes(ctr, baseCtr[:], num) h.cipher.Encrypt(ctr, ctr) n := subtle.XORBytes(dst, src, ctr) src = src[n:] dst = dst[n:] i++ } }