//go:build purego || plugin || !(amd64 || arm64) package bn256 func gfp2Mul(c, a, b *gfP2) { tmp := &gfP2{} tx := &tmp.x ty := &tmp.y v0, v1 := &gfP{}, &gfP{} gfpMul(v0, &a.y, &b.y) gfpMul(v1, &a.x, &b.x) gfpAdd(tx, &a.x, &a.y) gfpAdd(ty, &b.x, &b.y) gfpMul(tx, tx, ty) gfpSub(tx, tx, v0) gfpSub(tx, tx, v1) gfpSub(ty, v0, v1) gfpSub(ty, ty, v1) gfp2Copy(c, tmp) } func gfp2MulU(c, a, b *gfP2) { tmp := &gfP2{} tx := &tmp.x ty := &tmp.y v0, v1 := &gfP{}, &gfP{} gfpMul(v0, &a.y, &b.y) gfpMul(v1, &a.x, &b.x) gfpAdd(tx, &a.x, &a.y) gfpAdd(ty, &b.x, &b.y) gfpMul(ty, tx, ty) gfpSub(ty, ty, v0) gfpSub(ty, ty, v1) gfpDouble(ty, ty) gfpNeg(ty, ty) gfpSub(tx, v0, v1) gfpSub(tx, tx, v1) gfp2Copy(c, tmp) } func gfp2MulU1(c, a *gfP2) { t := &gfP{} gfpDouble(t, &a.x) gfpNeg(t, t) gfpCopy(&c.x, &a.y) gfpCopy(&c.y, t) } func gfp2Square(c, a *gfP2) { tmp := &gfP2{} tx := &tmp.x ty := &tmp.y gfpAdd(ty, &a.x, &a.y) gfpDouble(tx, &a.x) gfpSub(tx, &a.y, tx) gfpMul(ty, tx, ty) gfpMul(tx, &a.x, &a.y) gfpAdd(ty, tx, ty) gfpDouble(tx, tx) gfp2Copy(c, tmp) } func gfp2SquareU(c, a *gfP2) { tmp := &gfP2{} tx := &tmp.x ty := &tmp.y gfpAdd(tx, &a.x, &a.y) gfpDouble(ty, &a.x) gfpSub(ty, &a.y, ty) gfpMul(tx, tx, ty) gfpMul(ty, &a.x, &a.y) gfpAdd(tx, tx, ty) gfpDouble(ty, ty) gfpDouble(ty, ty) gfpNeg(ty, ty) gfp2Copy(c, tmp) } func curvePointDoubleComplete(c, p *curvePoint) { // Complete addition formula for a = 0 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2. // Algorithm 9: Exception-free point doubling for prime order j-invariant 0 short Weierstrass curves. t0, t1, t2 := new(gfP), new(gfP), new(gfP) x3, y3, z3 := new(gfP), new(gfP), new(gfP) gfpSqr(t0, &p.y, 1) // t0 := Y^2 gfpDouble(z3, t0) // Z3 := t0 + t0 gfpDouble(z3, z3) // Z3 := Z3 + Z3 gfpDouble(z3, z3) // Z3 := Z3 + Z3 gfpMul(t1, &p.y, &p.z) // t1 := YZ gfpSqr(t2, &p.z, 1) // t2 := Z^2 gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ^2 gfpMul(x3, t2, z3) // X3 := t2 * Z3 gfpAdd(y3, t0, t2) // Y3 := t0 + t2 gfpMul(z3, t1, z3) // Z3 := t1 * Z3 gfpTriple(t2, t2) // t2 := t2 + t2 + t2 gfpSub(t0, t0, t2) // t0 := t0 - t2 gfpMul(y3, t0, y3) // Y3 := t0 * Y3 gfpAdd(y3, x3, y3) // Y3 := X3 + Y3 gfpMul(t1, &p.x, &p.y) // t1 := XY gfpMul(x3, t0, t1) // X3 := t0 * t1 gfpDouble(x3, x3) // X3 := X3 + X3 c.x.Set(x3) c.y.Set(y3) c.z.Set(z3) } func curvePointAddComplete(c, p1, p2 *curvePoint) { // Complete addition formula for a = 0 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §3.2. // Algorithm 7: Complete, projective point addition for prime order j-invariant 0 short Weierstrass curves. t0, t1, t2, t3, t4 := new(gfP), new(gfP), new(gfP), new(gfP), new(gfP) x3, y3, z3 := new(gfP), new(gfP), new(gfP) gfpMul(t0, &p1.x, &p2.x) // t0 := X1X2 gfpMul(t1, &p1.y, &p2.y) // t1 := Y1Y2 gfpMul(t2, &p1.z, &p2.z) // t2 := Z1Z2 gfpAdd(t3, &p1.x, &p1.y) // t3 := X1 + Y1 gfpAdd(t4, &p2.x, &p2.y) // t4 := X2 + Y2 gfpMul(t3, t3, t4) // t3 := t3 * t4 = (X1 + Y1) * (X2 + Y2) gfpAdd(t4, t0, t1) // t4 := t0 + t1 gfpSub(t3, t3, t4) // t3 := t3 - t4 = X1Y2 + X2Y1 gfpAdd(t4, &p1.y, &p1.z) // t4 := Y1 + Z1 gfpAdd(x3, &p2.y, &p2.z) // X3 := Y2 + Z2 gfpMul(t4, t4, x3) // t4 := t4 * X3 = (Y1 + Z1)(Y2 + Z2) gfpAdd(x3, t1, t2) // X3 := t1 + t2 gfpSub(t4, t4, x3) // t4 := t4 - X3 = Y1Z2 + Y2Z1 gfpAdd(x3, &p1.x, &p1.z) // X3 := X1 + Z1 gfpAdd(y3, &p2.x, &p2.z) // Y3 := X2 + Z2 gfpMul(x3, x3, y3) // X3 := X3 * Y3 gfpAdd(y3, t0, t2) // Y3 := t0 + t2 gfpSub(y3, x3, y3) // Y3 := X3 - Y3 = X1Z2 + X2Z1 gfpTriple(t0, t0) // t0 := t0 + t0 + t0 = 3X1X2 gfpMul(t2, threeCurveB, t2) // t2 := 3b * t2 = 3bZ1Z2 gfpAdd(z3, t1, t2) // Z3 := t1 + t2 = Y1Y2 + 3bZ1Z2 gfpSub(t1, t1, t2) // t1 := t1 - t2 = Y1Y2 - 3bZ1Z2 gfpMul(y3, threeCurveB, y3) // Y3 = 3b * Y3 = 3b(X1Z2 + X2Z1) gfpMul(x3, t4, y3) // X3 := t4 * Y3 = 3b(X1Z2 + X2Z1)(Y1Z2 + Y2Z1) gfpMul(t2, t3, t1) // t2 := t3 * t1 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2) gfpSub(x3, t2, x3) // X3 := t2 - X3 = (X1Y2 + X2Y1)(Y1Y2 - 3bZ1Z2) - 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1) gfpMul(y3, y3, t0) // Y3 := Y3 * t0 = 9bX1X2(X1Z2 + X2Z1) gfpMul(t1, t1, z3) // t1 := t1 * Z3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2) gfpAdd(y3, t1, y3) // Y3 := t1 + Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 - 3bZ1Z2) + 9bX1X2(X1Z2 + X2Z1) gfpMul(t0, t0, t3) // t0 := t0 * t3 = 3X1X2(X1Y2 + X2Y1) gfpMul(z3, z3, t4) // Z3 := Z3 * t4 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) gfpAdd(z3, z3, t0) // Z3 := Z3 + t0 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1) c.x.Set(x3) c.y.Set(y3) c.z.Set(z3) }