// Copyright 2025 Sun Yimin. All rights reserved. // Use of this source code is governed by a MIT-style // license that can be found in the LICENSE file. // Code generated by generate.go. DO NOT EDIT. //go:build go1.24 package mldsa import ( "crypto" "crypto/sha3" "crypto/subtle" "encoding/asn1" "errors" "io" ) // A PrivateKey65 is the private key for the ML-DSA-65 signature scheme. type PrivateKey65 struct { rho [32]byte // public random seed k [32]byte // private random seed for signing tr [64]byte // pre-cached public key Hash, H(pk, 64) s1 [l65]ringElement // private secret of size L with short coefficients (-4..4) or (-2..2) s2 [k65]ringElement // private secret of size K with short coefficients (-4..4) or (-2..2) t0 [k65]ringElement // the Polynomial encoding of the 13 LSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the private key. a [k65 * l65]nttElement // a is generated and stored in NTT representation } // A Key65 is the key pair for the ML-DSA-65 signature scheme. type Key65 struct { PrivateKey65 xi [32]byte // input seed t1 [k65]ringElement // the Polynomial encoding of the 10 MSB of each coefficient of the uncompressed public key polynomial t. This is saved as part of the public key. } // A PublicKey65 is the public key for the ML-DSA-65 signature scheme. type PublicKey65 struct { rho [32]byte t1 [k65]ringElement tr [64]byte // H(pk, 64), need to further check if public key requires it a [k65 * l65]nttElement // a is generated and stored in NTT representation } // PublicKey generates and returns the corresponding public key for the given // Key65 instance. func (sk *Key65) PublicKey() *PublicKey65 { return &PublicKey65{ rho: sk.rho, t1: sk.t1, tr: sk.tr, a: sk.a, } } func (pk *PublicKey65) Equal(x crypto.PublicKey) bool { xx, ok := x.(*PublicKey65) if !ok { return false } return pk.rho == xx.rho && pk.t1 == xx.t1 } // Bytes converts the PublicKey65 instance into a byte slice. // See FIPS 204, Algorithm 22, pkEncode() func (pk *PublicKey65) Bytes() []byte { // The actual logic is in a separate function to outline this allocation. b := make([]byte, 0, PublicKeySize65) return pk.bytes(b) } func (pk *PublicKey65) bytes(b []byte) []byte { b = append(b, pk.rho[:]...) for _, f := range pk.t1 { b = simpleBitPack10Bits(b, f) } return b } // Bytes returns the byte representation of the PrivateKey65. // It copies the internal seed (xi) into a fixed-size byte array // and returns it as a slice. func (sk *Key65) Bytes() []byte { var b [SeedSize]byte copy(b[:], sk.xi[:]) return b[:] } // Bytes converts the PrivateKey65 instance into a byte slice. // See FIPS 204, Algorithm 24, skEncode() func (sk *PrivateKey65) Bytes() []byte { b := make([]byte, 0, PrivateKeySize65) return sk.bytes(b) } func (sk *PrivateKey65) bytes(b []byte) []byte { b = append(b, sk.rho[:]...) b = append(b, sk.k[:]...) b = append(b, sk.tr[:]...) for _, f := range sk.s1 { b = bitPackSigned4(b, f) } for _, f := range sk.s2 { b = bitPackSigned4(b, f) } for _, f := range sk.t0 { b = bitPackSigned4096(b, f) } return b } func (sk *PrivateKey65) Equal(x any) bool { xx, ok := x.(*PrivateKey65) if !ok { return false } return sk.rho == xx.rho && sk.k == xx.k && sk.tr == xx.tr && sk.s1 == xx.s1 && sk.s2 == xx.s2 && sk.t0 == xx.t0 } // GenerateKey65 generates a new Key65 (ML-DSA-65) using the provided random source. func GenerateKey65(rand io.Reader) (*Key65, error) { // The actual logic is in a separate function to outline this allocation. sk := &Key65{} return generateKey65(sk, rand) } func generateKey65(sk *Key65, rand io.Reader) (*Key65, error) { // Generate a random seed. var seed [SeedSize]byte if _, err := io.ReadFull(rand, seed[:]); err != nil { return nil, err } dsaKeyGen65(sk, &seed) return sk, nil } // NewKey65 creates a new instance of Key65 using the provided seed. func NewKey65(seed []byte) (*Key65, error) { // The actual logic is in a separate function to outline this allocation. sk := &Key65{} return newPrivateKey65FromSeed(sk, seed) } func newPrivateKey65FromSeed(sk *Key65, seed []byte) (*Key65, error) { if len(seed) != SeedSize { return nil, errors.New("mldsa: invalid seed length") } xi := (*[32]byte)(seed) dsaKeyGen65(sk, xi) return sk, nil } func dsaKeyGen65(sk *Key65, xi *[32]byte) { sk.xi = *xi H := sha3.NewSHAKE256() H.Write(xi[:]) H.Write([]byte{k65}) H.Write([]byte{l65}) K := make([]byte, 128) H.Read(K) rho, rho1 := K[:32], K[32:96] K = K[96:] sk.rho = [32]byte(rho) sk.k = [32]byte(K) s1 := &sk.s1 s2 := &sk.s2 // Algorithm 33, ExpandS for s := byte(0); s < l65; s++ { s1[s] = rejBoundedPoly(rho1, eta4, 0, s) } for r := byte(0); r < k65; r++ { s2[r] = rejBoundedPoly(rho1, eta4, 0, r+l65) } // Using rho generate A' = A in NTT form A := &sk.a // Algorithm 32, ExpandA for r := byte(0); r < k65; r++ { for s := byte(0); s < l65; s++ { A[r*l65+s] = rejNTTPoly(rho, s, r) } } // t = NTT_inv(A' * NTT(s1)) + s2 var s1NTT [l65]nttElement var nttT [k65]nttElement for i := range s1 { s1NTT[i] = ntt(s1[i]) } for i := range nttT { for j := range s1NTT { nttT[i] = polyAdd(nttT[i], nttMul(s1NTT[j], A[i*l65+j])) } } var t [k65]ringElement t0 := &sk.t0 t1 := &sk.t1 for i := range nttT { t[i] = polyAdd(inverseNTT(nttT[i]), s2[i]) // compress t for j := range n { t1[i][j], t0[i][j] = power2Round(t[i][j]) } } H.Reset() ek := sk.PublicKey().Bytes() H.Write(ek) H.Read(sk.tr[:]) } // NewPublicKey65 decode an public key from its encoded form. // See FIPS 204, Algorithm 23 pkDecode() func NewPublicKey65(b []byte) (*PublicKey65, error) { // The actual logic is in a separate function to outline this allocation. pk := &PublicKey65{} return parsePublicKey65(pk, b) } // See FIPS 204, Algorithm 23 pkDecode() func parsePublicKey65(pk *PublicKey65, b []byte) (*PublicKey65, error) { if len(b) != PublicKeySize65 { return nil, errors.New("mldsa: invalid public key length") } H := sha3.NewSHAKE256() H.Write(b) H.Read(pk.tr[:]) copy(pk.rho[:], b[:32]) b = b[32:] for i := range k65 { simpleBitUnpack10Bits(b, &pk.t1[i]) b = b[encodingSize10:] } A := &pk.a rho := pk.rho[:] // Algorithm 32, ExpandA for r := byte(0); r < k65; r++ { for s := byte(0); s < l65; s++ { A[r*l65+s] = rejNTTPoly(rho, s, r) } } return pk, nil } // NewPrivateKey65 decode an private key from its encoded form. // See FIPS 204, Algorithm 25 skDecode() func NewPrivateKey65(b []byte) (*PrivateKey65, error) { // The actual logic is in a separate function to outline this allocation. sk := &PrivateKey65{} return parsePrivateKey65(sk, b) } // See FIPS 204, Algorithm 25 skDecode() // Decode a private key from its encoded form. func parsePrivateKey65(sk *PrivateKey65, b []byte) (*PrivateKey65, error) { if len(b) != PrivateKeySize65 { return nil, errors.New("mldsa: invalid private key length") } copy(sk.rho[:], b[:32]) copy(sk.k[:], b[32:64]) copy(sk.tr[:], b[64:128]) b = b[128:] for i := range l65 { f, err := bitUnpackSigned4(b) if err != nil { return nil, err } sk.s1[i] = f b = b[encodingSize4:] } for i := range k65 { f, err := bitUnpackSigned4(b) if err != nil { return nil, err } sk.s2[i] = f b = b[encodingSize4:] } for i := range k65 { bitUnpackSigned4096(b, &sk.t0[i]) b = b[encodingSize13:] } A := &sk.a rho := sk.rho[:] // Algorithm 32, ExpandA for r := byte(0); r < k65; r++ { for s := byte(0); s < l65; s++ { A[r*l65+s] = rejNTTPoly(rho, s, r) } } return sk, nil } // Sign generates a digital signature for the given message and context using the private key. // It uses a random seed generated from the provided random source. // // Parameters: // - rand: An io.Reader used to generate a random seed for signing. // - message: The message to be signed. Must not be empty. // - context: An optional context for domain separation. Must not exceed 255 bytes. // // Returns: // - A byte slice containing the generated signature. // - An error if the message is empty, the context is too long, or if there is an issue // reading from the random source. // // Note: // - The function uses SHAKE256 from the SHA-3 family for hashing. // - The signing process involves generating a unique seed and a hash-based // message digest (mu) before delegating to the internal signing function. func (sk *PrivateKey65) Sign(rand io.Reader, message, context []byte) ([]byte, error) { if len(message) == 0 { return nil, errors.New("mldsa: empty message") } if len(context) > 255 { return nil, errors.New("mldsa: context too long") } var seed [SeedSize]byte if _, err := io.ReadFull(rand, seed[:]); err != nil { return nil, err } H := sha3.NewSHAKE256() H.Write(sk.tr[:]) H.Write([]byte{0, byte(len(context))}) if len(context) > 0 { H.Write(context) } H.Write(message) var mu [64]byte H.Read(mu[:]) return sk.signInternal(seed[:], mu[:]) } // SignWithPreHash generates a digital signature for the given message // using the private key and additional context. It uses a given hashing algorithm // from the OID to pre-hash the message before signing. // It is similar to Sign but allows for pre-hashing the message. func (sk *PrivateKey65) SignWithPreHash(rand io.Reader, message, context []byte, oid asn1.ObjectIdentifier) ([]byte, error) { if len(message) == 0 { return nil, errors.New("mldsa: empty message") } if len(context) > 255 { return nil, errors.New("mldsa: context too long") } preHashValue, err := preHash(oid, message) if err != nil { return nil, err } var seed [SeedSize]byte if _, err := io.ReadFull(rand, seed[:]); err != nil { return nil, err } H := sha3.NewSHAKE256() H.Write(sk.tr[:]) H.Write([]byte{1, byte(len(context))}) if len(context) > 0 { H.Write(context) } H.Write(preHashValue) var mu [64]byte H.Read(mu[:]) return sk.signInternal(seed[:], mu[:]) } // See FIPS 204, Algorithm 7 ML-DSA.Sign_internal() func (sk *PrivateKey65) signInternal(seed, mu []byte) ([]byte, error) { var s1NTT [l65]nttElement var s2NTT [k65]nttElement var t0NTT [k65]nttElement for i := range s1NTT { s1NTT[i] = ntt(sk.s1[i]) } for i := range s2NTT { s2NTT[i] = ntt(sk.s2[i]) } for i := range t0NTT { t0NTT[i] = ntt(sk.t0[i]) } var rho2 [64 + 2]byte H := sha3.NewSHAKE256() H.Write(sk.k[:]) H.Write(seed[:]) H.Write(mu[:]) H.Read(rho2[:64]) A := &sk.a // rejection sampling loop for kappa := 0; ; kappa = kappa + l65 { // expand mask var y [l65]ringElement for i := range l65 { index := kappa + i rho2[64] = byte(index) rho2[65] = byte(index >> 8) y[i] = expandMask(rho2[:], gamma1TwoPower19) } // compute w and w1 var w, w1 [k65]ringElement var wNTT [k65]nttElement for i := range w { for j := range y { wNTT[i] = polyAdd(wNTT[i], nttMul(ntt(y[j]), A[i*l65+j])) } w[i] = inverseNTT(wNTT[i]) // high bits for j := range w[i] { w1[i][j] = fieldElement(compressHighBits(w[i][j], gamma2QMinus1Div32)) } } // commitment hash var cTilde [lambda192 / 4]byte var w1Encoded [encodingSize4]byte H.Reset() H.Write(mu[:]) for i := range k65 { simpleBitPack4Bits(w1Encoded[:0], w1[i]) H.Write(w1Encoded[:]) } H.Read(cTilde[:]) // verifier's challenge cNTT := ntt(sampleInBall(cTilde[:], tau49)) var cs1 [l65]ringElement var cs2 [k65]ringElement var z [l65]ringElement var r0 [k65][n]int32 // compute <> and z = <> + y for i := range l65 { cs1[i] = inverseNTT(nttMul(cNTT, s1NTT[i])) z[i] = polyAdd(cs1[i], y[i]) } // compute <> and r0 = LowBits(w - <>) for i := range k65 { cs2[i] = inverseNTT(nttMul(cNTT, s2NTT[i])) for j := range cs2[i] { _, r0[i][j] = decompose(fieldSub(w[i][j], cs2[i][j]), gamma2QMinus1Div32) } } zNorm := vectorInfinityNorm(z[:], 0) r0Norm := vectorInfinityNormSigned(r0[:], 0) // if zNorm >= gamma1 - beta || r0Norm >= gamma2 - beta, then continue if subtle.ConstantTimeLessOrEq(int(gamma1TwoPower19-beta65), zNorm)|subtle.ConstantTimeLessOrEq(int(gamma2QMinus1Div32-beta65), r0Norm) == 1 { continue } // compute <> var ct0 [k65]ringElement for i := range k65 { ct0[i] = inverseNTT(nttMul(cNTT, t0NTT[i])) } // compute infinity norm of <> ct0Norm := vectorInfinityNorm(ct0[:], 0) // make hint var hints [k65]ringElement vectorMakeHint(ct0[:], cs2[:], w[:], hints[:], gamma2QMinus1Div32) // if the number of 1 in the hint is greater than omega or the infinity norm of <> >= gamma2, then continue if (subtle.ConstantTimeLessOrEq(int(omega55+1), vectorCountOnes(hints[:])) | subtle.ConstantTimeLessOrEq(gamma2QMinus1Div32, ct0Norm)) == 1 { continue } // signature encoding sig := make([]byte, 0, sigEncodedLen65) sig = append(sig, cTilde[:]...) for i := range l65 { sig = bitPackSignedTwoPower19(sig, z[i]) } return hintBitPack(sig, hints[:], omega55), nil } } // Verify checks the validity of a given signature for a message and context // using the public key. func (pk *PublicKey65) Verify(sig []byte, message, context []byte) bool { if len(message) == 0 { return false } if len(context) > 255 { return false } if len(sig) != sigEncodedLen65 { return false } H := sha3.NewSHAKE256() H.Write(pk.tr[:]) H.Write([]byte{0, byte(len(context))}) if len(context) > 0 { H.Write(context) } H.Write(message) var mu [64]byte H.Read(mu[:]) return pk.verifyInternal(sig, mu[:]) } // VerifyWithPreHash verifies a signature using a message and additional context. // It uses a given hashing algorithm from the OID to pre-hash the message before verifying. func (pk *PublicKey65) VerifyWithPreHash(sig []byte, message, context []byte, oid asn1.ObjectIdentifier) bool { if len(message) == 0 { return false } if len(context) > 255 { return false } if len(sig) != sigEncodedLen65 { return false } preHashValue, err := preHash(oid, message) if err != nil { return false } H := sha3.NewSHAKE256() H.Write(pk.tr[:]) H.Write([]byte{1, byte(len(context))}) if len(context) > 0 { H.Write(context) } H.Write(preHashValue) var mu [64]byte H.Read(mu[:]) return pk.verifyInternal(sig, mu[:]) } // See FIPS 204, Algorithm 8 ML-DSA.Verify_internal() func (pk *PublicKey65) verifyInternal(sig, mu []byte) bool { // Decode the signature cTilde := sig[:lambda192/4] sig = sig[lambda192/4:] var z [l65]ringElement for i := range l65 { bitUnpackSignedTwoPower19(sig, &z[i]) sig = sig[encodingSize20:] } zNorm := vectorInfinityNorm(z[:], 0) var hints [k65]ringElement if !hintBitUnpack(sig, hints[:], omega55) { return false } // verifier's challenge cNTT := ntt(sampleInBall(cTilde[:], tau49)) // t = t1 * 2^d // tNTT = NTT(t)*cNTT var tNTT [k65]nttElement t := pk.t1 for i := range k65 { for j := range t[i] { t[i][j] <<= d } tNTT[i] = nttMul(ntt(t[i]), cNTT) } var w1, wApprox [k65]ringElement var zNTT [k65]nttElement for i := range k65 { for j := 0; j < l65; j++ { zNTT[i] = polyAdd(zNTT[i], nttMul(ntt(z[j]), pk.a[i*l65+j])) } zNTT[i] = polySub(zNTT[i], tNTT[i]) wApprox[i] = inverseNTT(zNTT[i]) } H := sha3.NewSHAKE256() H.Write(mu[:]) var w1Encoded [encodingSize4]byte for i := range k65 { for j := range wApprox[i] { w1[i][j] = useHint(hints[i][j], wApprox[i][j], gamma2QMinus1Div32) } simpleBitPack4Bits(w1Encoded[:0], w1[i]) H.Write(w1Encoded[:]) } var cTilde1 [lambda192 / 4]byte H.Read(cTilde1[:]) return subtle.ConstantTimeLessOrEq(int(gamma1TwoPower19-beta65), zNorm) == 0 && subtle.ConstantTimeCompare(cTilde[:], cTilde1[:]) == 1 }