// Copyright 2025 Sun Yimin. All rights reserved. // Use of this source code is governed by a MIT-style // license that can be found in the LICENSE file. //go:build go1.24 package mldsa import ( "crypto/subtle" ) // fieldElement is an integer modulo q, an element of ℤ_q. It is always reduced. type fieldElement uint32 // fieldCheckReduced checks that a value a is < q. //func fieldCheckReduced(a uint32) (fieldElement, error) { // if a >= q { // return 0, errors.New("unreduced field element") // } // return fieldElement(a), nil //} // fieldReduceOnce reduces a value a < 2q. func fieldReduceOnce(a uint32) fieldElement { x := a - q // If x underflowed, then x >= 2^32 - q > 2^31, so the top bit is set. x += (x >> 31) * q return fieldElement(x) } func fieldAdd(a, b fieldElement) fieldElement { x := uint32(a + b) return fieldReduceOnce(x) } func fieldSub(a, b fieldElement) fieldElement { x := uint32(a - b + q) return fieldReduceOnce(x) } const ( qInv = 58728449 qNegInv = 4236238847 r = 4193792 // 2^32 mod q ) func fieldReduce(a uint64) fieldElement { t := uint32(a) * qNegInv return fieldReduceOnce(uint32((a + uint64(t)*q) >> 32)) } func fieldMul(a, b fieldElement) fieldElement { x := uint64(a) * uint64(b) return fieldReduce(x) } // fieldMulSub returns a * (b - c). This operation is fused to save a // fieldReduceOnce after the subtraction. func fieldMulSub(a, b, c fieldElement) fieldElement { x := uint64(a) * uint64(b-c+q) return fieldReduce(x) } // ringElement is a polynomial, an element of R_q, represented as an array. type ringElement [n]fieldElement // polyAdd adds two ringElements or nttElements. func polyAdd[T ~[n]fieldElement](a, b T) (s T) { for i := range s { s[i] = fieldAdd(a[i], b[i]) } return s } // polySub subtracts two ringElements or nttElements. func polySub[T ~[n]fieldElement](a, b T) (s T) { for i := range s { s[i] = fieldSub(a[i], b[i]) } return s } // nttElement is an NTT representation, an element of T_q, represented as an array. type nttElement [n]fieldElement // The table in FIPS 204 Appendix B uses the following formula // zeta[k]= 1753^bitrev(k) mod q for (k = 1..255) (The first value is not used). // // As this implementation uses montgomery form with a multiplier of 2^32. // The values need to be transformed i.e. // // zetasMontgomery[k] = fieldReduce(zeta[k] * (2^32 * 2^32 mod(q))) var zetasMontgomery = [n]fieldElement{ 4193792, 25847, 5771523, 7861508, 237124, 7602457, 7504169, 466468, 1826347, 2353451, 8021166, 6288512, 3119733, 5495562, 3111497, 2680103, 2725464, 1024112, 7300517, 3585928, 7830929, 7260833, 2619752, 6271868, 6262231, 4520680, 6980856, 5102745, 1757237, 8360995, 4010497, 280005, 2706023, 95776, 3077325, 3530437, 6718724, 4788269, 5842901, 3915439, 4519302, 5336701, 3574422, 5512770, 3539968, 8079950, 2348700, 7841118, 6681150, 6736599, 3505694, 4558682, 3507263, 6239768, 6779997, 3699596, 811944, 531354, 954230, 3881043, 3900724, 5823537, 2071892, 5582638, 4450022, 6851714, 4702672, 5339162, 6927966, 3475950, 2176455, 6795196, 7122806, 1939314, 4296819, 7380215, 5190273, 5223087, 4747489, 126922, 3412210, 7396998, 2147896, 2715295, 5412772, 4686924, 7969390, 5903370, 7709315, 7151892, 8357436, 7072248, 7998430, 1349076, 1852771, 6949987, 5037034, 264944, 508951, 3097992, 44288, 7280319, 904516, 3958618, 4656075, 8371839, 1653064, 5130689, 2389356, 8169440, 759969, 7063561, 189548, 4827145, 3159746, 6529015, 5971092, 8202977, 1315589, 1341330, 1285669, 6795489, 7567685, 6940675, 5361315, 4499357, 4751448, 3839961, 2091667, 3407706, 2316500, 3817976, 5037939, 2244091, 5933984, 4817955, 266997, 2434439, 7144689, 3513181, 4860065, 4621053, 7183191, 5187039, 900702, 1859098, 909542, 819034, 495491, 6767243, 8337157, 7857917, 7725090, 5257975, 2031748, 3207046, 4823422, 7855319, 7611795, 4784579, 342297, 286988, 5942594, 4108315, 3437287, 5038140, 1735879, 203044, 2842341, 2691481, 5790267, 1265009, 4055324, 1247620, 2486353, 1595974, 4613401, 1250494, 2635921, 4832145, 5386378, 1869119, 1903435, 7329447, 7047359, 1237275, 5062207, 6950192, 7929317, 1312455, 3306115, 6417775, 7100756, 1917081, 5834105, 7005614, 1500165, 777191, 2235880, 3406031, 7838005, 5548557, 6709241, 6533464, 5796124, 4656147, 594136, 4603424, 6366809, 2432395, 2454455, 8215696, 1957272, 3369112, 185531, 7173032, 5196991, 162844, 1616392, 3014001, 810149, 1652634, 4686184, 6581310, 5341501, 3523897, 3866901, 269760, 2213111, 7404533, 1717735, 472078, 7953734, 1723600, 6577327, 1910376, 6712985, 7276084, 8119771, 4546524, 5441381, 6144432, 7959518, 6094090, 183443, 7403526, 1612842, 4834730, 7826001, 3919660, 8332111, 7018208, 3937738, 1400424, 7534263, 1976782, } // ntt maps a ringElement to its nttElement representation. // // It implements NTT, according to FIPS 204, Algorithm 41. func ntt(f ringElement) nttElement { k := 1 // len: 128, 64, 32, ..., 1 for len := 128; len >= 1; len /= 2 { // start for start := 0; start < 256; start += 2 * len { zeta := zetasMontgomery[k] k++ // Bounds check elimination hint. f, flen := f[start:start+len], f[start+len:start+len+len] for j := range len { t := fieldMul(zeta, flen[j]) flen[j] = fieldSub(f[j], t) f[j] = fieldAdd(f[j], t) } } } return nttElement(f) } // inverseNTT maps a nttElement back to the ringElement it represents. // // It implements NTT⁻¹, according to FIPS 204, Algorithm 42. func inverseNTT(f nttElement) ringElement { k := 255 for len := 1; len < 256; len *= 2 { for start := 0; start < 256; start += 2 * len { zeta := q - zetasMontgomery[k] k-- // Bounds check elimination hint. f, flen := f[start:start+len], f[start+len:start+len+len] for j := range len { t := f[j] f[j] = fieldAdd(t, flen[j]) flen[j] = fieldMulSub(zeta, t, flen[j]) } } } for i := range f { f[i] = fieldMul(f[i], 41978) // 41978 = ((256⁻¹ mod q) * (2^64 mode q)) mode q } return ringElement(f) } func nttMul(f, g nttElement) nttElement { var ret nttElement for i, v := range f { ret[i] = fieldMul(v, g[i]) } return ret } // infinityNorm returns the absolute value modulo q in constant time // // i.e return x > (q - 1) / 2 ? q - x : x; func infinityNorm(a fieldElement) uint32 { ret := subtle.ConstantTimeLessOrEq(int(a), qMinus1Div2) return uint32(subtle.ConstantTimeSelect(ret, int(a), int(q-a))) } func polyInfinityNorm[T ~[n]fieldElement](a T, norm int) int { for i := range a { left := int(infinityNorm(a[i])) right := int(norm) norm = subtle.ConstantTimeSelect(subtle.ConstantTimeLessOrEq(left, right), right, left) } return norm } func vectorInfinityNorm[T ~[n]fieldElement](a []T, norm int) int { for i := range a { left := int(polyInfinityNorm(a[i], norm)) right := int(norm) norm = subtle.ConstantTimeSelect(subtle.ConstantTimeLessOrEq(left, right), right, left) } return norm } func infinityNormSigned(a int32) int { ret := subtle.ConstantTimeLessOrEq(0x80000000, int(a)) return subtle.ConstantTimeSelect(ret, int(-a), int(a)) } func polyInfinityNormSigned(a []int32, norm int) int { for i := range a { left := int(infinityNormSigned(a[i])) right := norm norm = subtle.ConstantTimeSelect(subtle.ConstantTimeLessOrEq(left, right), right, left) } return norm } func vectorInfinityNormSigned(a [][n]int32, norm int) int { for i := range a { left := int(polyInfinityNormSigned(a[i][:], norm)) right := norm norm = subtle.ConstantTimeSelect(subtle.ConstantTimeLessOrEq(left, right), right, left) } return norm } func vectorCountOnes(a []ringElement) int { var oneCount int for i := range a { for j := range a[i] { oneCount += int(a[i][j]) } } return oneCount } func vectorMakeHint(ct0, cs2, w, hint []ringElement, gamma2 uint32) { for i := range ct0 { for j := range ct0[i] { hint[i][j] = makeHint(ct0[i][j], cs2[i][j], w[i][j], gamma2) } } } func makeHint(ct0, cs2, w fieldElement, gamma2 uint32) fieldElement { rPulusZ := fieldSub(w, cs2) r := fieldAdd(rPulusZ, ct0) return fieldElement(1 ^ uint32(subtle.ConstantTimeEq(int32(compressHighBits(r, gamma2)), int32(compressHighBits(rPulusZ, gamma2))))) }