package sm2 import ( "bytes" "crypto/ecdsa" "crypto/elliptic" "encoding/hex" "errors" "math/big" "testing" "github.com/emmansun/gmsm/sm3" ) type CurveParams struct { elliptic.CurveParams A *big.Int // the constant of the curve equation } // polynomial returns x³ +ax + b. func (curve *CurveParams) polynomial(x *big.Int) *big.Int { x3 := new(big.Int).Mul(x, x) x3.Mul(x3, x) aX := new(big.Int).Mul(curve.A, x) x3.Add(x3, aX) x3.Add(x3, curve.B) x3.Mod(x3, curve.P) return x3 } func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || y.Sign() < 0 || y.Cmp(curve.P) >= 0 { return false } // y² = x³ + ax + b y2 := new(big.Int).Mul(y, y) y2.Mod(y2, curve.P) return curve.polynomial(x).Cmp(y2) == 0 } // zForAffine returns a Jacobian Z value for the affine point (x, y). If x and // y are zero, it assumes that they represent the point at infinity because (0, // 0) is not on the any of the curves handled here. func zForAffine(x, y *big.Int) *big.Int { z := new(big.Int) if x.Sign() != 0 || y.Sign() != 0 { z.SetInt64(1) } return z } // affineFromJacobian reverses the Jacobian transform. See the comment at the // top of the file. If the point is ∞ it returns 0, 0. func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { if z.Sign() == 0 { return new(big.Int), new(big.Int) } zinv := new(big.Int).ModInverse(z, curve.P) zinvsq := new(big.Int).Mul(zinv, zinv) xOut = new(big.Int).Mul(x, zinvsq) xOut.Mod(xOut, curve.P) zinvsq.Mul(zinvsq, zinv) yOut = new(big.Int).Mul(y, zinvsq) yOut.Mod(yOut, curve.P) return } func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { z1 := zForAffine(x1, y1) z2 := zForAffine(x2, y2) return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) } // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and // (x2, y2, z2) and returns their sum, also in Jacobian form. func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { // See https://hyperelliptic.org/EFD/g1p/data/shortw/jacobian/addition/add-2007-bl x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) if z1.Sign() == 0 { x3.Set(x2) y3.Set(y2) z3.Set(z2) return x3, y3, z3 } if z2.Sign() == 0 { x3.Set(x1) y3.Set(y1) z3.Set(z1) return x3, y3, z3 } z1z1 := new(big.Int).Mul(z1, z1) z1z1.Mod(z1z1, curve.P) z2z2 := new(big.Int).Mul(z2, z2) z2z2.Mod(z2z2, curve.P) u1 := new(big.Int).Mul(x1, z2z2) u1.Mod(u1, curve.P) u2 := new(big.Int).Mul(x2, z1z1) u2.Mod(u2, curve.P) h := new(big.Int).Sub(u2, u1) xEqual := h.Sign() == 0 if h.Sign() == -1 { h.Add(h, curve.P) } i := new(big.Int).Lsh(h, 1) i.Mul(i, i) j := new(big.Int).Mul(h, i) s1 := new(big.Int).Mul(y1, z2) s1.Mul(s1, z2z2) s1.Mod(s1, curve.P) s2 := new(big.Int).Mul(y2, z1) s2.Mul(s2, z1z1) s2.Mod(s2, curve.P) r := new(big.Int).Sub(s2, s1) if r.Sign() == -1 { r.Add(r, curve.P) } yEqual := r.Sign() == 0 if xEqual && yEqual { return curve.doubleJacobian(x1, y1, z1) } r.Lsh(r, 1) v := new(big.Int).Mul(u1, i) x3.Set(r) x3.Mul(x3, x3) x3.Sub(x3, j) x3.Sub(x3, v) x3.Sub(x3, v) x3.Mod(x3, curve.P) y3.Set(r) v.Sub(v, x3) y3.Mul(y3, v) s1.Mul(s1, j) s1.Lsh(s1, 1) y3.Sub(y3, s1) y3.Mod(y3, curve.P) z3.Add(z1, z2) z3.Mul(z3, z3) z3.Sub(z3, z1z1) z3.Sub(z3, z2z2) z3.Mul(z3, h) z3.Mod(z3, curve.P) return x3, y3, z3 } func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { z1 := zForAffine(x1, y1) return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) } // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and // returns its double, also in Jacobian form. func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { // See https://hyperelliptic.org/EFD/g1p/data/shortw/jacobian/doubling/dbl-2007-bl xx := new(big.Int).Mul(x, x) xx.Mod(xx, curve.P) yy := new(big.Int).Mul(y, y) yy.Mod(yy, curve.P) yyyy := new(big.Int).Mul(yy, yy) yyyy.Mod(yyyy, curve.P) zz := new(big.Int).Mul(z, z) zz.Mod(zz, curve.P) s := new(big.Int).Add(x, yy) s.Mul(s, s) s.Sub(s, xx) if s.Sign() == -1 { s.Add(s, curve.P) } s.Sub(s, yyyy) if s.Sign() == -1 { s.Add(s, curve.P) } s.Lsh(s, 1) s.Mod(s, curve.P) m := new(big.Int).Mul(xx, big.NewInt(3)) m.Mod(m, curve.P) tmp := new(big.Int).Mul(zz, zz) tmp.Mul(tmp, curve.A) tmp.Mod(tmp, curve.P) m.Add(m, tmp) m.Mod(m, curve.P) t := new(big.Int).Mul(m, m) t.Sub(t, s) if t.Sign() == -1 { t.Add(t, curve.P) } t.Sub(t, s) if t.Sign() == -1 { t.Add(t, curve.P) } t.Mod(t, curve.P) x3 := t y3 := new(big.Int).Sub(s, t) y3.Mul(y3, m) yyyy.Lsh(yyyy, 3) y3.Sub(y3, yyyy) if y3.Sign() == -1 { y3.Add(y3, curve.P) } y3.Mod(y3, curve.P) z3 := new(big.Int).Add(y, z) z3.Mul(z3, z3) z3.Sub(z3, yy) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Sub(z3, zz) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Mod(z3, curve.P) return x3, y3, z3 } func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { Bz := new(big.Int).SetInt64(1) x, y, z := new(big.Int), new(big.Int), new(big.Int) for _, byte := range k { for bitNum := 0; bitNum < 8; bitNum++ { x, y, z = curve.doubleJacobian(x, y, z) if byte&0x80 == 0x80 { x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) } byte <<= 1 } } return curve.affineFromJacobian(x, y, z) } func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { return curve.ScalarMult(curve.Gx, curve.Gy, k) } func bigFromHex(s string) *big.Int { b, ok := new(big.Int).SetString(s, 16) if !ok { panic("sm2/elliptic: internal error: invalid encoding") } return b } var sampleParams = &CurveParams{ elliptic.CurveParams{ Name: "sampleCurve", BitSize: 256, P: bigFromHex("8542D69E4C044F18E8B92435BF6FF7DE457283915C45517D722EDB8B08F1DFC3"), N: bigFromHex("8542D69E4C044F18E8B92435BF6FF7DD297720630485628D5AE74EE7C32E79B7"), B: bigFromHex("63E4C6D3B23B0C849CF84241484BFE48F61D59A5B16BA06E6E12D1DA27C5249A"), Gx: bigFromHex("421DEBD61B62EAB6746434EBC3CC315E32220B3BADD50BDC4C4E6C147FEDD43D"), Gy: bigFromHex("0680512BCBB42C07D47349D2153B70C4E5D7FDFCBFA36EA1A85841B9E46E09A2"), }, bigFromHex("787968B4FA32C3FD2417842E73BBFEFF2F3C848B6831D7E0EC65228B3937E498"), } func TestPublicKey(t *testing.T) { d := bigFromHex("6FCBA2EF9AE0AB902BC3BDE3FF915D44BA4CC78F88E2F8E7F8996D3B8CCEEDEE") x, y := sampleParams.ScalarBaseMult(d.Bytes()) if hex.EncodeToString(x.Bytes()) != "3099093bf3c137d8fcbbcdf4a2ae50f3b0f216c3122d79425fe03a45dbfe1655" || hex.EncodeToString(y.Bytes()) != "3df79e8dac1cf0ecbaa2f2b49d51a4b387f2efaf482339086a27a8e05baed98b" { t.FailNow() } d = bigFromHex("5E35D7D3F3C54DBAC72E61819E730B019A84208CA3A35E4C2E353DFCCB2A3B53") x, y = sampleParams.ScalarBaseMult(d.Bytes()) if hex.EncodeToString(x.Bytes()) != "245493d446c38d8cc0f118374690e7df633a8a4bfb3329b5ece604b2b4f37f43" || hex.EncodeToString(y.Bytes()) != "53c0869f4b9e17773de68fec45e14904e0dea45bf6cecf9918c85ea047c60a4c" { t.FailNow() } } // calculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA) func calculateSampleZA(pub *ecdsa.PublicKey, a *big.Int, uid []byte) ([]byte, error) { uidLen := len(uid) if uidLen >= 0x2000 { return nil, errors.New("sm2: the uid is too long") } entla := uint16(uidLen) << 3 md := sm3.New() md.Write([]byte{byte(entla >> 8), byte(entla)}) if uidLen > 0 { md.Write(uid) } md.Write(toBytes(pub.Curve, a)) md.Write(toBytes(pub.Curve, pub.Params().B)) md.Write(toBytes(pub.Curve, pub.Params().Gx)) md.Write(toBytes(pub.Curve, pub.Params().Gy)) md.Write(toBytes(pub.Curve, pub.X)) md.Write(toBytes(pub.Curve, pub.Y)) return md.Sum(nil), nil } // Sample from Appendix A.2 func TestKeyExchangeRealSample(t *testing.T) { initiatorUID := []byte("ALICE123@YAHOO.COM") responderUID := []byte("BILL456@YAHOO.COM") kenLen := 16 // initiator's private key privA := new(PrivateKey) privA.D = bigFromHex("6FCBA2EF9AE0AB902BC3BDE3FF915D44BA4CC78F88E2F8E7F8996D3B8CCEEDEE") privA.Curve = sampleParams privA.X, privA.Y = privA.Curve.ScalarBaseMult(privA.D.Bytes()) if hex.EncodeToString(privA.X.Bytes()) != "3099093bf3c137d8fcbbcdf4a2ae50f3b0f216c3122d79425fe03a45dbfe1655" || hex.EncodeToString(privA.Y.Bytes()) != "3df79e8dac1cf0ecbaa2f2b49d51a4b387f2efaf482339086a27a8e05baed98b" { t.Fatalf("unexpected public key PA") } // initiator's Z value za, _ := calculateSampleZA(&privA.PublicKey, sampleParams.A, initiatorUID) if hex.EncodeToString(za) != "e4d1d0c3ca4c7f11bc8ff8cb3f4c02a78f108fa098e51a668487240f75e20f31" { t.Fatalf("unexpected ZA") } // responder's private key privB := new(PrivateKey) privB.D = bigFromHex("5E35D7D3F3C54DBAC72E61819E730B019A84208CA3A35E4C2E353DFCCB2A3B53") privB.Curve = sampleParams privB.X, privB.Y = privB.Curve.ScalarBaseMult(privB.D.Bytes()) if hex.EncodeToString(privB.X.Bytes()) != "245493d446c38d8cc0f118374690e7df633a8a4bfb3329b5ece604b2b4f37f43" || hex.EncodeToString(privB.Y.Bytes()) != "53c0869f4b9e17773de68fec45e14904e0dea45bf6cecf9918c85ea047c60a4c" { t.Fatalf("unexpected public key PB") } // responder's Z value zb, _ := calculateSampleZA(&privB.PublicKey, sampleParams.A, responderUID) if hex.EncodeToString(zb) != "6b4b6d0e276691bd4a11bf72f4fb501ae309fdacb72fa6cc336e6656119abd67" { t.Fatalf("unexpected ZB") } // create initiator initiator, err := NewKeyExchange(privA, &privB.PublicKey, initiatorUID, responderUID, kenLen, true) if err != nil { t.Fatal(err) } // overwrite Z values, due to different A initiator.z = za initiator.peerZ = zb // create responder responder, err := NewKeyExchange(privB, &privA.PublicKey, responderUID, initiatorUID, kenLen, true) if err != nil { t.Fatal(err) } // overwrite Z values, due to different A responder.z = zb responder.peerZ = za defer func() { initiator.Destroy() responder.Destroy() }() // for initiator's step A1-A3 rA := bigFromHex("83A2C9C8B96E5AF70BD480B472409A9A327257F1EBB73F5B073354B248668563") initKeyExchange(initiator, rA) if hex.EncodeToString(initiator.secret.X.Bytes()) != "6cb5633816f4dd560b1dec458310cbcc6856c09505324a6d23150c408f162bf0" || hex.EncodeToString(initiator.secret.Y.Bytes()) != "0d6fcf62f1036c0a1b6daccf57399223a65f7d7bf2d9637e5bbbeb857961bf1a" { t.Fatalf("unexpected RA") } // for responder's step B1-B8 rB := bigFromHex("33FE21940342161C55619C4A0C060293D543C80AF19748CE176D83477DE71C80") RB, sB, _ := respondKeyExchange(responder, initiator.secret, rB) if hex.EncodeToString(RB.X.Bytes()) != "1799b2a2c778295300d9a2325c686129b8f2b5337b3dcf4514e8bbc19d900ee5" || hex.EncodeToString(RB.Y.Bytes()) != "54c9288c82733efdf7808ae7f27d0e732f7c73a7d9ac98b7d8740a91d0db3cf4" { t.Fatalf("unexpected RB") } if hex.EncodeToString(sB) != "284c8f198f141b502e81250f1581c7e9eeb4ca6990f9e02df388b45471f5bc5c" { t.Fatalf("unexpected sB") } // for initiator's step A4-A10 keyA, sA, err := initiator.ConfirmResponder(RB, sB) if err != nil { t.Fatal(err) } if hex.EncodeToString(sA) != "23444daf8ed7534366cb901c84b3bdbb63504f4065c1116c91a4c00697e6cf7a" { t.Fatalf("unexpected sA") } // for responder's step B10 keyB, err := responder.ConfirmInitiator(sA) if err != nil { t.Fatal(err) } if !bytes.Equal(keyA, keyB) { t.Errorf("got different key") } if !bytes.Equal(keyA, hexDecode(t, "55B0AC62A6B927BA23703832C853DED4")) { t.Errorf("got unexpected keying data %v\n", hex.EncodeToString(keyA)) } }