// Package sm3 implements ShangMi(SM) sm3 hash algorithm. package sm3 // [GM/T] SM3 GB/T 32905-2016 import ( "errors" "hash" "github.com/emmansun/gmsm/internal/byteorder" ) // Size the size of a SM3 checksum in bytes. const Size = 32 // SizeBitSize the bit size of Size. const SizeBitSize = 5 // BlockSize the blocksize of SM3 in bytes. const BlockSize = 64 const ( chunk = 64 init0 = 0x7380166f init1 = 0x4914b2b9 init2 = 0x172442d7 init3 = 0xda8a0600 init4 = 0xa96f30bc init5 = 0x163138aa init6 = 0xe38dee4d init7 = 0xb0fb0e4e ) // digest represents the partial evaluation of a checksum. type digest struct { h [8]uint32 x [chunk]byte nx int len uint64 } const ( magic = "sm3\x03" marshaledSize = len(magic) + 8*4 + chunk + 8 ) func (d *digest) MarshalBinary() ([]byte, error) { return d.AppendBinary(make([]byte, 0, marshaledSize)) } func (d *digest) AppendBinary(b []byte) ([]byte, error) { b = append(b, magic...) b = appendUint32(b, d.h[0]) b = appendUint32(b, d.h[1]) b = appendUint32(b, d.h[2]) b = appendUint32(b, d.h[3]) b = appendUint32(b, d.h[4]) b = appendUint32(b, d.h[5]) b = appendUint32(b, d.h[6]) b = appendUint32(b, d.h[7]) b = append(b, d.x[:d.nx]...) b = append(b, make([]byte, len(d.x)-d.nx)...) b = appendUint64(b, d.len) return b, nil } func (d *digest) UnmarshalBinary(b []byte) error { if len(b) < len(magic) || (string(b[:len(magic)]) != magic) { return errors.New("sm3: invalid hash state identifier") } if len(b) != marshaledSize { return errors.New("sm3: invalid hash state size") } b = b[len(magic):] b, d.h[0] = consumeUint32(b) b, d.h[1] = consumeUint32(b) b, d.h[2] = consumeUint32(b) b, d.h[3] = consumeUint32(b) b, d.h[4] = consumeUint32(b) b, d.h[5] = consumeUint32(b) b, d.h[6] = consumeUint32(b) b, d.h[7] = consumeUint32(b) b = b[copy(d.x[:], b):] b, d.len = consumeUint64(b) d.nx = int(d.len % chunk) return nil } func appendUint64(b []byte, x uint64) []byte { var a [8]byte byteorder.BEPutUint64(a[:], x) return append(b, a[:]...) } func appendUint32(b []byte, x uint32) []byte { var a [4]byte byteorder.BEPutUint32(a[:], x) return append(b, a[:]...) } func consumeUint64(b []byte) ([]byte, uint64) { _ = b[7] x := uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 return b[8:], x } func consumeUint32(b []byte) ([]byte, uint32) { _ = b[3] x := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 return b[4:], x } // New returns a new hash.Hash computing the SM3 checksum. The Hash // also implements encoding.BinaryMarshaler and // encoding.BinaryUnmarshaler to marshal and unmarshal the internal // state of the hash. func New() hash.Hash { d := new(digest) d.Reset() return d } // Sum appends the current hash to in and returns the resulting slice. // It does not change the underlying hash state. func (d *digest) Sum(in []byte) []byte { // Make a copy of d so that caller can keep writing and summing. d0 := *d hash := d0.checkSum() return append(in, hash[:]...) } func (d *digest) checkSum() [Size]byte { len := d.len // Padding. Add a 1 bit and 0 bits until 56 bytes mod 64. var tmp [64 + 8]byte // padding + length buffer tmp[0] = 0x80 var t uint64 if len%64 < 56 { t = 56 - len%64 } else { t = 64 + 56 - len%64 } // Length in bits. len <<= 3 padlen := tmp[:t+8] byteorder.BEPutUint64(padlen[t:], len) d.Write(padlen) if d.nx != 0 { panic("d.nx != 0") } var digest [Size]byte byteorder.BEPutUint32(digest[0:], d.h[0]) byteorder.BEPutUint32(digest[4:], d.h[1]) byteorder.BEPutUint32(digest[8:], d.h[2]) byteorder.BEPutUint32(digest[12:], d.h[3]) byteorder.BEPutUint32(digest[16:], d.h[4]) byteorder.BEPutUint32(digest[20:], d.h[5]) byteorder.BEPutUint32(digest[24:], d.h[6]) byteorder.BEPutUint32(digest[28:], d.h[7]) return digest } func (d *digest) Write(p []byte) (nn int, err error) { nn = len(p) d.len += uint64(nn) if d.nx > 0 { n := copy(d.x[d.nx:], p) d.nx += n if d.nx == chunk { block(d, d.x[:]) d.nx = 0 } p = p[n:] } if len(p) >= chunk { n := len(p) &^ (chunk - 1) block(d, p[:n]) p = p[n:] } if len(p) > 0 { d.nx = copy(d.x[:], p) } return } func (d *digest) Size() int { return Size } func (d *digest) BlockSize() int { return BlockSize } // Reset resets the Hash to its initial state. func (d *digest) Reset() { d.h[0] = init0 d.h[1] = init1 d.h[2] = init2 d.h[3] = init3 d.h[4] = init4 d.h[5] = init5 d.h[6] = init6 d.h[7] = init7 d.nx = 0 d.len = 0 } // Sum returns the SM3 checksum of the data. func Sum(data []byte) [Size]byte { var d digest d.Reset() d.Write(data) return d.checkSum() } // Kdf key derivation function using SM3, compliance with GB/T 32918.4-2016 5.4.3. func (baseMD *digest) Kdf(z []byte, keyLen int) []byte { limit := uint64(keyLen+Size-1) / uint64(Size) if limit >= uint64(1<<32)-1 { panic("sm3: key length too long") } baseMD.Reset() baseMD.Write(z) return kdf(baseMD, keyLen, int(limit)) } func kdfGeneric(baseMD *digest, keyLen int, limit int) []byte { var countBytes [4]byte var ct uint32 = 1 k := make([]byte, keyLen) for i := 0; i < limit; i++ { byteorder.BEPutUint32(countBytes[:], ct) md := *baseMD md.Write(countBytes[:]) h := md.checkSum() copy(k[i*Size:], h[:]) ct++ } return k } func Kdf(z []byte, keyLen int) []byte { baseMD := new(digest) return baseMD.Kdf(z, keyLen) }